Damian Kerr

## Answered question

2022-02-03

How do you simplify $3\frac{{x}^{2}}{4}\left(xy-z\right)+4x\frac{y}{3}\left({x}^{2}+2\right)-2\frac{{x}^{2}}{3}\left(xy-z\right)+3x\frac{y}{5}\left({x}^{2}+2\right)?$

### Answer & Explanation

Zayden Sims

Beginner2022-02-04Added 8 answers

Step 1
Let’s first simplify the individual terms and then combine them finally.
$13\left(\frac{{x}^{2}}{4}\right)\left(xy-z\right)=\left(\frac{13{x}^{2}}{4}\right)\left(xy-z\right)=\frac{13{x}^{3}y}{4}-\frac{13{x}^{2}z}{4}$
$\left(4x\right)\left(\frac{y}{3}\right)\left({x}^{2}+2\right)=\left(\frac{13xy}{3}\right)\left({x}^{2}+2\right)=\frac{13{x}^{3}y}{3}+\frac{26xy}{3}$
$2\left(\frac{{x}^{2}}{3}\right)\left(xy-z\right)=\left(7\frac{{x}^{2}}{3}\right)\left(xy-z\right)=\frac{7{x}^{3}y}{3}-\frac{7{x}^{2}z}{3}$
$\left(3x\right)\left(\frac{y}{5}\right)\left({x}^{2}+2\right)=\left(\frac{16xy}{5}\right)\left({x}^{2}+2\left(=\frac{16{x}^{3}y}{5}+\frac{32xy}{5}$
Combining all the terms,
$\frac{13{x}^{3}y}{4}-\frac{13{x}^{2}z}{4}+\frac{13{x}^{3}y}{3}+\frac{26xy}{3}-\frac{7{x}^{3}z}{3}+\frac{7{x}^{2}z}{3}+\frac{16{x}^{3}y}{5}+\frac{32xy}{5}$
$=-\frac{13{x}^{2}z}{4}+\frac{7{x}^{2}z}{3}+\frac{13{x}^{3}y}{4}+\frac{13{x}^{3}y}{3}-\frac{7{x}^{3}y}{3}+\frac{16{x}^{3}y}{5}+\frac{26xy}{3}+\frac{32xy}{5}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?