\(\displaystyle{{\log}_{{{3}}}{\left({\frac{{{x}^{{{9}}}{y}^{{{8}}}}}{{{7}}}}\right)}}\) A) \(\displaystyle{9}{{\log}_{{{3}}}{\left({x}\right)}}+{8}{{\log}_{{{3}}}{\left({y}\right)}}-{{\log}_{{{3}}}{\left({7}\right)}}\) B) \(\displaystyle{9}{{\log}_{{{3}}}{\left({x}\right)}}-{8}{{\log}_{{{3}}}{\left({y}\right)}}-{{\log}_{{{3}}}{\left({7}\right)}}\) C) (9\log_{3}(x))(8\log_{3}(y))-\log_{3}(7)ZSK D)

encaderpwp

encaderpwp

Answered question

2022-03-28

log3(x9y87)
A) 9log3(x)+8log3(y)log3(7)
B) 9log3(x)8log3(y)log3(7)
C) (9log3(x))(8log3(y))-log3(7)
D) 9log3(x)+8log3(y)log3(7)

Answer & Explanation

memantangti17

memantangti17

Beginner2022-03-29Added 13 answers

Step 1
Given 
log3(x9y87)
Step 2
App'y log rule logcab=logc(a)logc(b)
 log3x9y87=log3(x9y8)log3(7)
App'y log rule logc(ab)=logc(a)+logc(b)
=log3(x9)+log3y8log37
App'y log rule loga(xb)=blogax
log3x9y87=qlog3(x)+8log3(y)log3(7)
option (A) is correct

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?