Compute the following binomial probabilities directly from the formula for b(x, n, p):a) b(3, 8, .6)b) b(5, 8, .6)c) P(3 ≤ X ≤ 5) when n = 8 and p = .6d)P(1 ≤ X) when n = 12 and p = .1

remolatg

remolatg

Answered question

2020-10-20

Compute the following binomial probabilities directly from the formula for b(x,n,p):

a) b(3, 8, 0.6)

b) b(5, 8, 0.6)

c) P(3X5)

when n=8 and p=0.6

d)P(1X) when n=12 and p=0.1

Answer & Explanation

comentezq

comentezq

Skilled2020-10-21Added 106 answers

Step 1

a) Given:n=8,p=0.6,x=3

X Binomeal (x=8,p=0.6) I will use the excel formula "=BINOM.DIST(x, n, p, FALSE)" to find the probability. xnpExcelformulaProbability,P(x)Roundtothreedecimals380.6=BINOM.DIST(3,8,0.6,FALSE)0.124

As a result, this probability is P(3)=0.124

Answer: 0.124

Step 2

b) Given: n=8,p=0.6,x=5 XBinomial (x=8,p=0.6) I intend to use the Excel formula "=BINOM.DIST(x, n, p, FALSE)" to find the probability.

xnpExcelformulaProbability,P(x)Roundtothreedecimals580.6=BINOM.DIST(5,8,0.6,FALSE)0.279

Therefore, this probability is P(5)=0.279

Answer: 0.279

Step 3

c) Given: n=8,p=0.6

X Binomial (n=8,p=0.6) find: P(3X5)=P(3)+P(4)+P(5) I intend to use the Excel formula "=BINOM.DIST(x, n, p, FALSE)" to find the probability. xnpExcelformulaProbability,P(x)Round to three decimals380.6=BINOM.DIST(3,8,0.6,FALSE)0.124480.6=BINOM.DIST(4,8,0.6,FALSE)0.232580.6=BINOM.DIST(5,8,0.6,FALSE)0.279

Therefore, this probability is P(3X5)=0.124+0.232+0.279
P(3X5)=0.635

Answer: 0.635

Step 4

d) Given: n=12,p=0.1

X Binomial (n=12,p=0.1) find: P(1X)=? Use the complement rule, P(1X)=1P(0) I will make use of the Excel formula "=BINOM.DIST(x, n, p, FALSE)" to find the probability.

nick1337

nick1337

Expert2023-05-14Added 777 answers

Step 1:
a) To solve the binomial probability b(3,8,0.6), we can use the formula:
b(x,n,p)=(nx)·px·(1p)nx
Substituting the given values, we have:
b(3,8,0.6)=(83)·(0.6)3·(10.6)83
Calculating the binomial coefficient:
(83)=8!3!(83)!=8!3!·5!=8·7·63·2·1=56
Substituting the values:
b(3,8,0.6)=56·(0.6)3·(10.6)83
Evaluating the expression:
b(3,8,0.6)=56·0.63·0.450.2784
Therefore, b(3,8,0.6)0.2784.
Step 2:
b) To compute the binomial probability b(5,8,0.6), we use the same formula:
b(5,8,0.6)=(85)·(0.6)5·(10.6)85
Calculating the binomial coefficient:
(85)=8!5!(85)!=8!5!·3!=8·7·63·2·1=56
Substituting the values:
b(5,8,0.6)=56·(0.6)5·(10.6)85
Evaluating the expression:
b(5,8,0.6)=56·0.65·0.430.258048
Therefore, b(5,8,0.6)0.258048.
Step 3:
c) To compute the probability P(3X5) when n=8 and p=0.6, we sum the individual binomial probabilities for x=3,4, and 5:
P(3X5)=b(3,8,0.6)+b(4,8,0.6)+b(5,8,0.6)
Substituting the values:
P(3X5)=b(3,8,0.6)+b(4,8,0.6)+b(5,8,0.6)
Using the values calculated in parts (a) and (b):
5)0.2784+0.258048+0.258048
Simplifying the expression:
P(3X5)0.794496
Therefore, P(3X5)0.794496.
Step 4:
d) To compute the probability P(1X) when n=12 and p=0.1, we need to sum the individual binomial probabilities for all values of x starting from 1 up to n=12:
P(1X)=b(1,12,0.1)+b(2,12,0.1)++b(12,12,0.1)
Since we need to calculate a large number of terms, it's more convenient to calculate the complementary probability P(X=0) and subtract it from 1:
P(1X)=1P(X=0)
To calculate P(X=0), we use the formula:
P(X=0)=(120)·(0.1)0·(10.1)120=(10.1)12
Simplifying:
P(X=0)=(0.9)12
Substituting in the complementary probability formula:
P(1X)=1(0.9)12
Calculating the expression:
P(1X)10.28243
Therefore, P(1X)0.71757.
Don Sumner

Don Sumner

Skilled2023-05-14Added 184 answers

a) To compute the binomial probability b(x,n,p) for x=3, n=8, and p=0.6, we use the formula:
b(3,8,0.6)=(83)·(0.6)3·(10.6)83
Let's calculate each component of the formula:
(83)=8!3!(83)!=8·7·63·2·1=56
Therefore, b(3,8,0.6)=56·(0.6)3·(0.4)5.
b) To compute the binomial probability b(x,n,p) for x=5, n=8, and p=0.6, we use the same formula:
b(5,8,0.6)=(85)·(0.6)5·(10.6)85
Calculating each component:
(85)=8!5!(85)!=8·7·63·2·1=56
Therefore, b(5,8,0.6)=56·(0.6)5·(0.4)3.
c) To compute the probability P(3X5) when n=8 and p=0.6, we sum the individual probabilities for x=3, 4, and 5:
P(3X5)=b(3,8,0.6)+b(4,8,0.6)+b(5,8,0.6)
Substituting the values we calculated earlier:
P(3X5)=56·(0.6)3·(0.4)5+56·(0.6)4·(0.4)4+56·(0.6)5·(0.4)3
d) To compute the probability P(1X) when n=12 and p=0.1, we need to sum the individual probabilities for all values of x from 1 to 12:
P(1X)=b(1,12,0.1)+b(2,12,0.1)++b(12,12,0.1)
We can simplify this calculation using the complement rule. Since P(1X)=1P(X=0), we can find the probability of X=0 and subtract it from 1:
P(X=0)=b(0,12,0.1)=(120)·(0.1)0·(10.1)120
Calculating each component:
(120)=1
Therefore,P(X=0)=(120)·(0.1)0·(10.1)120
Calculating each component:
(120)=1
Therefore, P(X=0)=1·(0.1)0·(0.9)12.
Now, we can calculate P(1X) using the complement rule:
P(1X)=1P(X=0)=1(0.9)12
Thus, the binomial probability P(1X) when n=12 and p=0.1 is 1(0.9)12.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?