I'm reading about Bayesian data analysis by Gelman et al. and I'm having big trouble interpreting th

rigliztetbf

rigliztetbf

Answered question

2022-06-26

I'm reading about Bayesian data analysis by Gelman et al. and I'm having big trouble interpreting the following part in the book (note, the rat tumor rate θ in the following text has: θ B e t a ( α , β )
Choosing a standard parameterization and setting up a ‘noninformative’ hyperprior dis- tribution.
Because we have no immediately available information about the distribution of tumor rates in populations of rats, we seek a relatively diffuse hyperprior distribution for ( α , β ). Before assigning a hyperprior distribution, we reparameterize in terms of logit ( α α + β ) = log ( α β ) and log ( α + β ), which are the logit of the mean and the logarithm of the ‘sample size’ in the beta population distribution for θ . It would seem reasonable to assign independent hyperprior distributions to the prior mean and ‘sample size,’ and we use the logistic and logarithmic transformations to put each on ( , ) scale. Unfortunately, a uniform prior density on these newly transformed parameters yields an improper posterior density, with an infinite integral in the limit ( α + β ) , and so this particular prior density cannot be used here.
In a problem such as this with a reasonably large amount of data, it is possible to set up a ‘noninformative’ hyperprior density that is dominated by the likelihood and yields a proper posterior distribution. One reasonable choice of diffuse hyperprior density is uniform on ( α α + β , ( α + β ) 1 / 2 ), which when multiplied by the appropriate Jacobian yields the following densities on the original scale,
p ( α , β ) ( α + β ) 5 / 2 ,
and on the natural transformed scale:
p ( log ( α β ) , log ( α + β ) ) α β ( α + β ) 5 / 2 .
My problem is especially the bolded parts in the text.
Question (1): What does the author explicitly mean by: "is uniform on ( α α + β , ( α + β ) 1 / 2 )
Question (2): What is the appropriate Jacobian?
Question (3): How does the author arrive into the original and transformed scale priors?
To me the book hides many details under the hood and makes understanding difficult for a beginner on the subject due to seemingly ambiguous text.
P.S. if you need more information, or me to clarify my questions please let me know.

Answer & Explanation

Raven Higgins

Raven Higgins

Beginner2022-06-27Added 17 answers

If anyone runs into the similar section in Gelman's book, I'm going to give my own solution that I came up with below (pages 110-111).
By this, the author only implies that
p ( α α + β ,  ( α + β )  1 / 2 ) = constant  1.
Answer (2):
When the author refers to a "appropriate Jacobian," he is referring to the Jacobian matrix's determinant in the formula for density functions with changed variables:
p ( ϕ ) = p ( θ )  det ( d θ d ϕ ) 
Answer (3):
Simply said, the author uses the change of variables formula twice. The fact that
p ( γ , δ ) = p ( γ ( α , β ) ,  δ ( α , β ) ) = p ( α α + β ,  ( α + β )  1 / 2 ) = constant  1.
If we denote θ = ( γ , δ ) and ϕ = ( α , β )), then:
det ( d θ d ϕ ) = | d γ d α d γ d β d δ d α d δ d β | = | β ( α + β ) 2  α ( α + β ) 2  1 2 ( α + β ) 3 / 2  1 2 ( α + β ) 3 / 2 | =  1 2 ( α + β ) 5 / 2 .
From the formula for variable change, we obtain:
p ( α , β ) = p ( α α + β ,  ( α + β )  1 / 2 )  = constant    1  (  1 2 ( α + β ) 5 / 2 )  ( α + β )  5 / 2 ,
and there it is, i.e. the prior in original scale.
By using the exact same modification of variables for the alternate scale:
p ( α , β ) = p ( log  ( α β ) , log  ( α + β ) )  det ( d θ d ϕ ) ,
where this time γ ( α , β ) = log  ( α β ) and δ ( α , β ) = log  ( α + β ) We obtain: for the Jacobian determinant.
det ( d θ d ϕ ) = | d γ d α d γ d β d δ d α d δ d β | = | 1 / α  1 / β ( α + β )  1 ( α + β )  1 | = 1 α β ,
so we get:
p ( α , β )    ( α + β )  5 / 2 = p ( log  ( α β ) , log  ( α + β ) )  1 α β ,
or
p ( log  ( α β ) , log  ( α + β ) )  α β ( α + β )  5 / 2 .

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?