Yahir Tucker

2022-06-28

Proving question, pattern and inequalities

Hi my math tutor gave me this problem to do over the week: prove 1/1^2+1/2^2+1/3^2...1/1000^2 <2

I've managed to almost complete the question, but I think I'm missing something or made a mistake.

My attempt at the question: 1/1000^2 < 1/999*1000 1/2^2+1/3^2+...1/1000^2<1/1*2+1/2*3+...1/999*1000 1/1*2+1/2*3+...1/999*1000= (1-1/2)+(1/2-1/3)+(1/3-1/4)...+1/999-1/1000 (we can cancel out each fraction except for 1-1/1000)

Therefore, 1/1*2+1/2*3+...1/999*1000=1-1/1000 1/2^2+1/3^2+...1/1000^2<1-1000 1/1^2+1/2^2+1/3^2...1/1000^2<2-1000

As you can see, I'm stuck please help D;

Hi my math tutor gave me this problem to do over the week: prove 1/1^2+1/2^2+1/3^2...1/1000^2 <2

I've managed to almost complete the question, but I think I'm missing something or made a mistake.

My attempt at the question: 1/1000^2 < 1/999*1000 1/2^2+1/3^2+...1/1000^2<1/1*2+1/2*3+...1/999*1000 1/1*2+1/2*3+...1/999*1000= (1-1/2)+(1/2-1/3)+(1/3-1/4)...+1/999-1/1000 (we can cancel out each fraction except for 1-1/1000)

Therefore, 1/1*2+1/2*3+...1/999*1000=1-1/1000 1/2^2+1/3^2+...1/1000^2<1-1000 1/1^2+1/2^2+1/3^2...1/1000^2<2-1000

As you can see, I'm stuck please help D;

Reagan Madden

Beginner2022-06-29Added 15 answers

$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+...+\frac{1}{{1000}^{2}}<$

$<\frac{1}{{1}^{2}}+\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+...+\frac{1}{999\cdot 1000}=$

$=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}=1+1-\frac{1}{1000}<2$

$<\frac{1}{{1}^{2}}+\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+...+\frac{1}{999\cdot 1000}=$

$=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}=1+1-\frac{1}{1000}<2$

Lydia Carey

Beginner2022-06-30Added 9 answers

By Riemann Sums:

$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\cdots +\frac{1}{{1000}^{2}}=1+(\frac{1}{{2}^{2}}+\cdots +\frac{1}{{1000}^{2}})\le 1+{\int}_{1}^{1000}\frac{dx}{{x}^{2}}=1+\frac{999}{1000}<2$

$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\cdots +\frac{1}{{1000}^{2}}=1+(\frac{1}{{2}^{2}}+\cdots +\frac{1}{{1000}^{2}})\le 1+{\int}_{1}^{1000}\frac{dx}{{x}^{2}}=1+\frac{999}{1000}<2$

Which expression has both 8 and n as factors???

One number is 2 more than 3 times another. Their sum is 22. Find the numbers

8, 14

5, 17

2, 20

4, 18

10, 12Perform the indicated operation and simplify the result. Leave your answer in factored form

$\left[\frac{(4x-8)}{(-3x)}\right].\left[\frac{12}{(12-6x)}\right]$ An ordered pair set is referred to as a ___?

Please, can u convert 3.16 (6 repeating) to fraction.

Write an algebraic expression for the statement '6 less than the quotient of x divided by 3 equals 2'.

A) $6-\frac{x}{3}=2$

B) $\frac{x}{3}-6=2$

C) 3x−6=2

D) $\frac{3}{x}-6=2$Find: $2.48\xf74$.

Multiplication $999\times 999$ equals.

Solve: (128÷32)÷(−4)=

A) -1

B) 2

C) -4

D) -3What is $0.78888.....$ converted into a fraction? $\left(0.7\overline{8}\right)$

The mixed fraction representation of 7/3 is...

How to write the algebraic expression given: the quotient of 5 plus d and 12 minus w?

Express 200+30+5+4100+71000 as a decimal number and find its hundredths digit.

A)235.47,7

B)235.047,4

C)235.47,4

D)234.057,7Find four equivalent fractions of the given fraction:$\frac{6}{12}$

How to find the greatest common factor of $80{x}^{3},30y{x}^{2}$?