How do you solve: <mstyle displaystyle="true"> x 2

Crystal Wheeler

Crystal Wheeler

Answered question

2022-07-09

How do you solve: x 2 - 9 x 2 - 1 < 0 ?

Answer & Explanation

fugprurgeil

fugprurgeil

Beginner2022-07-10Added 12 answers

Step 1
Your inequality looks like this
x 2 - 9 x 2 - 1 < 0 
You know right away that the values of x that will cause the denominator to equal zero cannot be part of any solution set you might come up with.
More specifically, you need to have
x 2 - 1  0  x  ± 1 
This disparity must exist in order for it to be true.
x 2 - 9 < 0    and    x 2 - 1 > 0 
or
x 2 - 9 > 0    and    x 2 - 1 < 0 
The first set of requirements must be satisfied in order for
{ x 2 - 9 < 0  x < ± 3  x  ( - 3 , 3 ) x 2 - 1 > 0  x > ± 1  x  ( -  , - 1 )  ( 1 , +  ) 
This means that you need x  ( - 3 , - 1 )  ( 1 , 3 ) .
You must meet the second set of requirements in order to
{ x 2 - 9 > 0  x > ± 3  x  ( -  , - 3 )  ( 3 , +  ) x 2 - 1 < 0  x < ± 1  x  ( - 1 , 1 ) 
This time, those two intervals will not produce a valid solution set, or x   
The only option left to you is x  ( - 3 , - 1 )  ( 1 , 3 ) . The fraction will be negative because the values of x that fall within this interval will result in a positive denominator and a negative numerator.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?