let f(x)=1/(1+2cosx) prove that : f((2 pi)/(7))+f((4 pi)/(7))+f((6pi)/(7})=1

Noelanijd

Noelanijd

Answered question

2022-07-23

f ( 2 π 7 ) + f ( 4 π 7 ) + f ( 6 π 7 ) = 1
let
f ( x ) = 1 1 + 2 cos x
prove that :
f ( 2 π 7 ) + f ( 4 π 7 ) + f ( 6 π 7 ) = 1
My Try :
f ( 2 π 7 ) = 1 1 + 2 cos ( 2 π 7 )
f ( 2 π 7 ) = 1 1 + 2 cos ( 4 π 7 )
f ( 2 π 7 ) = 1 1 + 2 cos ( 6 π 7 )
L = 1 1 + 2 cos ( 6 π 7 ) + 1 1 + 2 cos ( 4 π 7 ) + 1 1 + 2 cos ( 2 π 7 )
what now ?

Answer & Explanation

Clarissa Adkins

Clarissa Adkins

Beginner2022-07-24Added 16 answers

Use factor z 7 1 into linear and quadratic factors and prove that cos ( π / 7 ) cos ( 2 π / 7 ) cos ( 3 π / 7 ) = 1 / 8
or if 7 x = 2 m π where m is any integer
sin 4 x = sin ( 2 m π 3 x ) = sin 3 x
4 sin x cos x cos 2 x = sin x ( 4 sin 2 x 3 )
4 sin x cos x ( 2 cos 2 x 1 ) = sin x { 4 ( 1 cos 2 x ) 1 }
So, the roots of 4 cos x ( 2 cos 2 x 1 ) = 4 ( 1 cos 2 x ) 1 8 cos 3 x + 4 cos 2 x 4 cos x 3 = 0         ( 1 )
are 7 x = 2 m π where m ± 1 , ± 2 , ± 3 ( mod 7 )
Now if u = 1 1 + 2 cos x cos x = ?
Replace the values of cos x in ( 1 )
Levi Rasmussen

Levi Rasmussen

Beginner2022-07-25Added 6 answers

Let 2 cos 2 π 7 = a, 2 cos 4 π 7 = b and 2 cos 6 π 7 = c
Hence,
a + b + c = 2 sin π 7 cos 2 π 7 + 2 sin π 7 cos 4 π 7 + 2 sin π 7 cos 6 π 7 sin π 7 =
= sin 3 π 7 sin π 7 + sin 5 π 7 sin 3 π 7 + sin 7 π 7 sin 5 π 7 sin π 7 = 1 ;
a b + a c + b c = 4 ( cos 2 π 7 cos 4 π 7 + cos 2 π 7 cos 6 π 7 + cos 4 π 7 cos 6 π 7 ) =
= 2 ( cos 6 π 7 + cos 2 π 7 + cos 6 π 7 + cos 4 π 7 + cos 4 π 7 + cos 2 π 7 ) = 2
and
a b c = 8 cos 2 π 7 cos 4 π 7 cos 6 π 7 = 8 sin 2 π 7 cos 2 π 7 cos 4 π 7 cos 8 π 7 sin 2 π 7 = sin 16 π 7 sin 2 π 7 = 1.
Id est,
f ( 2 π 7 ) + f ( 4 π 7 ) + f ( 6 π 7 ) = c y c 1 1 + a = c y c ( a + 1 ) ( b + 1 ) c y c ( 1 + a ) =
= a b + a c + b c + 2 ( a + b + c ) + 3 1 + a + b + c + a b + a c + b c + a b c = 2 2 + 3 1 1 2 + 1 = 1.
Done!

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?