I have to perform complex partial fraction decomposition of the following term: (k^4)/((a k^3-1)^2) where a is a real positive number. and I would like to know if it is possible to reduce it to a sum of fractions of the type (A)/(k+-z), (B k)/(k^2+-z), (Ck)/(k^2-y) or similar. Where z is a complex number and y is a real number. If it is not possible to reduce it to the kind of fraction I listed above other type of decomposition might work too. Any hint on the process, or any reference would be nice. Thanks in advance

aanpalendmw

aanpalendmw

Answered question

2022-07-22

partial fraction decomposition of k 4 ( a k 3 1 ) 2
I have to perform complex partial fraction decomposition of the following term:
k 4 ( a k 3 1 ) 2
where a is a real positive number.
and I would like to know if it is possible to reduce it to a sum of fractions of the type A k ± z , B k k 2 ± z , C k k 2 y or similar. Where z is a complex number and y is a real number.
If it is not possible to reduce it to the kind of fraction I listed above other type of decomposition might work too.
Any hint on the process, or any reference would be nice.
Thanks in advance

Answer & Explanation

yelashwag8

yelashwag8

Beginner2022-07-23Added 17 answers

I would start by making the change of variable a k 3 = x 3 , which transforms the expression into
a 3 / 4 x 4 ( x 3  1 ) 2 .
The denominator is now factored. Given that there is only a two-cube difference, this is simple.
x 3  1 = ( x  1 ) ( x 2 + x + 1 ) .
The quadratic is irreducible over the reals, as you can see. Then (ignoring the constant a 3 / 4 ) we have
x 4 ( x  1 ) 2 ( x 2 + x + 1 ) = A x  1 + B ( x  1 ) 2 + C x + D x 2 + x + 1 + E x + F ( x 2 + x + 1 ) 2 .

Glenn Hopkins

Glenn Hopkins

Beginner2022-07-24Added 4 answers

Set a = b 3 and denominator will be factored as
( b 3 k 3  1 ) 2 = ( b k  1 ) 2 ( b 2 k 2 + b k + 1 ) 2 
After that, you split into partial fractions.
e + f k b 2 k 2 + b k + 1 + g + h k ( b 2 k 2 + b k + 1 ) 2 + c b k  1 + d ( b k  1 ) 2 
where c , d , e , f , g , h are unknowns and must be obtained solving a six equations linear system. Prior to considering the numerator of the result, you first sum all the fractions.
b 5 c k 5 + b 4 c k 4 + b 4 d k 4 + b 4 e k 4 + b 4 f k 5 + b 3 c k 3 + 2 b 3 d k 3  b 3 e k 3  b 3 f k 4  b 2 c k 2 + 3 b 2 d k 2 + b 2 g k 2 + b 2 h k 3  b c k + 2 b d k  b e k  b f k 2  2 b g k  2 b h k 2  c + d + e + f k + g + h k
Numerator must be identical to k 4 so coefficients (from degree 0 up to 5 must be { 0 , 0 , 0 , 0 , 1 , 0 }
The system offers several lovely solutions.
c = 2 9 b 4 , d = 1 9 b 4 , e = 4 9 b 4 , f =  2 9 b 3 , g =  1 3 b 4 , h = 0
Hence, the initial fraction can be expressed as
1 9 b 4 (  2 ( b k  2 ) b 2 k 2 + b k + 1  3 ( b 2 k 2 + b k + 1 ) 2 + 2 b k  1 + 1 ( b k  1 ) 2 ) 
with b = a 1 3 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?