Solve. 1. sin x cos^3 x-cosx sin^3 x=1/4sin^4x (cos x+cos 4x+cos 7x)/(sin x+sin 4x+sin 7x)=cot 4x

Darian Hubbard

Darian Hubbard

Answered question

2022-08-01

Solve.
1. sin x cos 3 x cos x sin 3 x = 1 / 4 sin 4 x
2. cos x + cos 4 x + cos 7 x sin x + sin 4 x + sin 7 x = cot 4 x

Answer & Explanation

Monastro3n

Monastro3n

Beginner2022-08-02Added 15 answers

1) Take out common factors:
sin x cos x [ cos 2 x sin 2 x ] = ( 1 / 4 ) sin ( 4 x )
double angle identity:
sin ( 2 x ) = 2 sin ( x ) cos ( x )
So,
sin ( 2 x ) 2 [ cos ( 2 x ) ] = sin ( 4 x ) 4
sin ( 2 x ) cos ( 2 x ) 2 = sin ( 4 x ) 4
We already know that:
sin ( 2 u ) = sin ( u ) cos ( u )
if we let u = 2x:
sin [ 2 ( 2 x ) ] = sin ( 2 x ) cos ( 2 x )
sin ( 4 x ) = sin ( 2 x ) cos ( 2 x )
sin ( 4 x ) 4 = sin ( 4 x ) 4
2) we know that cos x + cos 7 x = 2 cos ( 7 x + x ) / 2 c o s ( 7 x x ) / 2 = 2 cos 4 x cos 3 x
and sin x + sin 7 x = 2 sin ( 7 x + x ) / 2 cos ( 7 x x ) / 2 = 2 sin 4 x cos 3 x
cos x + cos 4 x + cos 7 x sin x + sin 4 x + sin 7 x = 2 cos 4 x cos 3 x + cos 4 x 2 sin 4 x cos 3 x + sin 4 x = cos 4 x ( 2 cos 3 x + 1 ) sin 4 x ( 2 cos 3 x + 1 ) = cos 4 x sin 4 x = cot x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?