coexpennan
2021-03-06
Ian Adams
Skilled2021-04-16Added 163 answers
Componendo:
If \(\frac { a }{ b } = \frac { c }{ d } then \frac { (a+b) }{ b } = \frac { (c+d) }{ d }\)
Dividendo:
If \(\frac { a }{ b } = \frac { c }{ d } then \frac { (a-b) }{ b } = \frac { (c-d) }{ d }\)
Componendo-Dividendo:
If \(\frac { a }{ b } = \frac { c }{ d } then \frac { (a+b) }{ (a-b) } = \frac { (c+d) }{ (c-d) }\)
1. Divide 900 in the ratio 4:5
We cannot use x for solving
Total parts \(= 4 + 5 = 9\)
First number = \((\frac { 4 }{ 9 })\)\(900 = 400\)
Second number = \((\frac { 5 }{ 9 })\)\(900 = 500\)
2. Divide 1500 in the ratio 5:7:3
Total parts \(= 5 + 7 + 3 = 15\)
First number = \((\frac { 5 }{ 15 })\)\(1500 = 500\)
Second number = \((\frac { 7 }{ 15 })\)\(1500 = 700\)
Third number =\((\frac { 3 }{ 15 })\) \(1500 = 300\)
When two parameters are directly proportional if one parameter increases the other one also increases and if one decreases another one also decreases.
If parameters A and B are directly proportional then they will satisfy the following equation
\(\frac { A1 }{ A2 } = \frac { B1 }{ B2 }\)
Example:
Price of diamond is directly proportional to its weight. If 3 grams of diamond costs Rs 45000. Then what will be the price of 8 grams of the diamond.
Solution:
As two parameters which are weight and cost are directly proportional.
Hence,\(\frac { W1 }{ W2 } = \frac { C1 }{ C2 }\)
\(3/8 = 45000/C2\)
\(C2 = 120000\)
TRICK 3: Inverse Proportional
When two parameters are inversely proportional if one parameter increases then other one decreases and if the one decreases then the other increases.
If parameter A and B are inversely proportional then they will satisfy the following equation
\(\frac { A1 }{ A2 } = \frac { B1 }{ B2 }\)
TRICK 4:
If the ratio’s A:B and B:C are given then we can find A:C without solving any equation
A | B | C |
x | y | y |
m | m | n |
\(A: B: C → X m : Y m : Y n\)
Examples:
If the ratio of A:B is 4:5 and the ratio of B:C is 3:4. Then find the ratio A:C
A | B | C |
4 | 5 | 5 |
3 | 4 | 4 |
3 : 5 3 : 5 4
\(A:B:C → 12:15:20\)
If the ratio of a salary of A and B is 2:3, B and C is 4:5, C and D is 6:7. If the salary of A is 48000 then Find the salary of D.
A | B | C | D |
2 | 3 | 3 | 3 |
4 | 4 | 5 | 5 |
6 | 6 | 6 | 7 |
\(A:B:C:D\ à\ 48: 72: 90: 105\)
\(A:D = 48:105\)
D’s salary \(= 105000\)
Common factor “X” should be used only when there is no direct relation with ratio either directly or inversely
Example:
Two numbers are in the ratio 3:5. Sum of their squares is 30600. Find the numbers.
\(Ratio ⟶ 3: 5\)
Assume the actual number 3x and 5x
According to the question,
\((3x)^{2}+(5x)^{2} = 30600\)
\(34x^{2}= 30600\)
\(x^{2}= 900\)
\(x = 30\)
Substitute the value of x in 3x and 5x to find numbers
Hence the numbers are 90 and 150
\(Quantity\ Ratio ⟶ Q1 : Q2 : Q3\)
\(Value\ Ratio⟶ V1 : V2 : V3\)
\((Q1 V1) + (Q2 V2) + (Q3 V3) = T\)
Common factor X = Total Amount/ T
Quantity of each coin \(= Q1X , Q2X, Q3X\)
Example:
1. A bag contains 5 paisa, 10 paisa and 20 paisa coins in the ratio 2:4:5. Total amount in the bag is Rs. 4.50 How many coins are there of 20 paisa?
Solutions:
\(T = (5 2) + (10 4) + (20 5)\)
\(T = 150\ paisa = Rs. 1.50\)
\(X = 4.50/ 1.50 = 3\)
Hence the quantity of 20 paisa coins \(= 5 x3 = 15 coins
\)
2. The bag contains 440 coins of 1 rupee, 50 paisa and 25 paisa and their value are in the ratio 6:7:9. Find the number of 50 paisa coins.
Solution:
\(Value\ Ratio ⟶ 6:7:9\)
\(Coins\ Ratio ⟶ 6 1: 7 2: 9 4\)
\(3:7:18\)
Number of 50 paisa coins = \((\frac { 7 }{ 28 }) \times\)\(440 = 110\)
We have explained some of the tricks of ratio in the first part of Ratio. Now we will discuss some more examples of the previous tricks of Ratio.
If A:B is 2:5 and B:C is 7:3 then find A:B:C
A | B | C |
2 | 5 | 5 |
7 | 3 | 3 |
\(A:B:C = 7 2 : 7 5 : 5 3\)
\(A:B:C = 14:21:15\)
A wooden stick is broken into two parts one bigger and one smaller part. The ratio of the bigger part and the smaller part is proportional to the ratio of lengths of the full stick and bigger part. Find the ratio.
Solution:
Let us consider the length of bigger part be 1 m and the smaller part be ‘x’ m.
So length of full stick \(= (1+x) m\)
Acc. to the ques.
=\(\frac { 1 }{ x }=\)\(\frac { 1 + x }{ x }\)
\(x^{2}+ x = 1\)
x =\(\frac { (-1+\sqrt { 5 } ) }{ 2 }\) (As the length will be positive)
Three persons A,B,C whose salary together amount to Rs. 96000. But the expenses of all three person is 75% , 85% and 80% of their salaries. If their savings is in the ratio of 8: 9:20. Find the salary of B
Solution:
Let us suppose the salary of A be Rs. x, B be Rs. y and C be Rs. Z
Then the savings of them is
\(\frac { (x\times 25)}{100}\), \(\frac { (y\times 15)}{100}\),\(\frac { (Z\times 20)}{100}\)
\(\frac { x }{ 4 }\), \(\frac { 3y }{ 20 }\),\(\frac { z }{ 5 }\) \(= 8:9:20\)
\(x:y:z = 32:60:100 = 8:15:25\)
B’s salary will be \((\frac { 15 }{ 48 })\times\)\(96000 = Rs. 30000\)
Seats in medical, commerce and art department in the college is in the ratio of 5:7:8. But due to the popularity of the college, management decided to increase the number of seats by 40%, 50% and 75% respectively. Find the new ratio of a number of seats available.
Solution:
Initial ratio of seats \(= 5:7:8\)
There is increase of 40%, 50% and 75%
New ratio of seats:
5 x140% : 7 x150% : 8 x175%
7: \(\frac { 21 }{ 2 }\):14
\(2:3:4\)
Hence the new ratio of seats is \(2:3:4\)
The ratio of the first and second class fares between two railway stations in 4:1 and that of the number of passengers is 2:17. If on a day Rs. 2500 is collected as a fare. Find the amount collected from the second class passengers.
Solution:
Given è Ratio of fares \(= 4:1\)
Ratio of number of passengers \(= 2:17\)
Ratio of amount collection \(= 4 x2 : 1 x17 = 8:17\)
Hence amount collected from second-class passengers is
\((\frac {17 }{ 25 } )\times\)\(2500 = 1700\)
Required amount collection is Rs. 1700
Price of the diamond is directly proportional to the square of its weight. If the diamond is dropped and broken into three pieces of the ratio 1:2:3.If the price of original diamond is Rs. 1296 Find the loss after breakage of diamond
Solution:
Let us consider the total weight be ‘x’
Acc. to ques. Weight is proportional to square of weight
\(x^{2}= 1296\)
\(X = 36\)
After breakage ratio of weight \(= 1:2:3\)
Actual Weight \(= 6, 12, 18\)
Total value \(= 6^{2}+12^{2} +18^{2}\)
\(= 36+144+324 = 504\)
Loss after breakage \(= 1296 - 504 = 792\)
The numbers or quantities are said to be in proportion when the two ratio between them are equal.
For two ratio to be equal there is requirement of four variables.
If \(\frac { a }{ b } = \frac {c }{ d }\)then a, b, c, d are said to be in proportion
This is expressed as ‘a’ is to ‘b’ is to ‘c’ is to ‘d’
And written as a:b :: c:d
( product of means = product of extremes)
When there are only three variables or quantities like a, b, c. Then the middle number is to be repeated
\(a:b = b:c\)
Middle number b is called mean proportion and a and c are called extreme numbers.
\(B^{2}= Ax C\)
Find the third proportion of 6 and 12 Given it is third proportion where \(a = 6\) and \( b = 12\)
\(B^{2}= Ax C\)
\(12^{2}= 6 xC\)
\(C = 24\)
Which expression has both 8 and n as factors???
One number is 2 more than 3 times another. Their sum is 22. Find the numbers
8, 14
5, 17
2, 20
4, 18
10, 12
Perform the indicated operation and simplify the result. Leave your answer in factored form
An ordered pair set is referred to as a ___?
Please, can u convert 3.16 (6 repeating) to fraction.
Write an algebraic expression for the statement '6 less than the quotient of x divided by 3 equals 2'.
A)
B)
C) 3x−6=2
D)
Find: .
Multiplication equals.
Solve: (128÷32)÷(−4)=
A) -1
B) 2
C) -4
D) -3
What is converted into a fraction?
The mixed fraction representation of 7/3 is...
How to write the algebraic expression given: the quotient of 5 plus d and 12 minus w?
Express 200+30+5+4100+71000 as a decimal number and find its hundredths digit.
A)235.47,7
B)235.047,4
C)235.47,4
D)234.057,7
Find four equivalent fractions of the given fraction:
How to find the greatest common factor of ?