Clarification about a proof it's just a clarification about a proof : The starting inequality is : 0.5 >= 1.5-1/((a^2 + a b + 2 a + b^2 + 3)/(a^2 + a b - 2 a + b^2 + 3)+1)-1/((c^2 + c b + 2 b + b^2 + 3)/(c^2 + c b - 2 b + b^2 + 3)+1)-(1)/((a^2 + a c + 2 c + c^2 + 3)/(a^2 + a c - 2 c + c^2 + 3)+1) So we study the function f(x)=0.5-1/(x+1)

Nadia Smith

Nadia Smith

Answered question

2022-09-09

Clarification about a proof
it's just a clarification about a proof :
The starting inequality is :
0.5 1.5 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 1 1 c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + 1 1 a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 + 1
So we study the function f ( x ) = 0.5 1 x + 1 wich is concave so we can apply Jensen inequality we get :
0.5 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 3 + 1 1 3 ( 1.5 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 1 1 c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + 1 1 a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 + 1 )
Wich is equivalent to :
1.5 3 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 3 + 1 ( 1.5 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 1 1 c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + 1 1 a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 + 1 )
But it's easy to find the minimum of :
3 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 3 + 1
Wich is one so we have :
0.5 1.5 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 1 1 c 2 + c b + 2 b + b 2 + 3 c 2 + c b 2 b + b 2 + 3 + 1 1 a 2 + a c + 2 c + c 2 + 3 a 2 + a c 2 c + c 2 + 3 + 1
Done !

Answer & Explanation

Yasmin Lam

Yasmin Lam

Beginner2022-09-10Added 13 answers

You proved that
c y c 1 a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 1 3 c y c a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 3 + 1
or
c y c a 2 + a b 2 a + b 2 + 3 a 2 + a b + b 2 + 3 18 c y c a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 + 3 .
Now, you want to use the following reasoning.
Since
c y c a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 = 3 + c y c ( a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3 1 ) =
= 3 + c y c 4 a a 2 + a b 2 a + b 2 + 3 3 ,
where the equality occurs for a=b=c=0, we see that the minimal value of
c y c a 2 + a b + 2 a + b 2 + 3 a 2 + a b 2 a + b 2 + 3
is 3.
Thus, it's enough to prove that
c y c a 2 + a b 2 a + b 2 + 3 a 2 + a b + b 2 + 3 18 3 + 3
or
c y c a 2 + a b 2 a + b 2 + 3 a 2 + a b + b 2 + 3 3
and here you say that the starting inequality is proven.
I think it's not so because the last inequality is wrong.
Try a = b = c = 1.
I hope it's clear now.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?