Let (x,y,z) in R, prove that ((2x-y)/(x-y))^2+((2y-z)/(y-z))^2 +((2z-x)/(z-x))^2 >= 5

Kelton Bailey

Kelton Bailey

Answered question

2022-09-30

Let ( x , y , z ) R , prove that ( 2 x y x y ) 2 + ( 2 y z y z ) 2 + ( 2 z x z x ) 2 5

Answer & Explanation

smh3402en

smh3402en

Beginner2022-10-01Added 11 answers

Start with
( 2 y 2 z + 2 z 2 x + 2 x 2 y y z 2 z x 2 x y 2 3 x y z ) 2 0
This can be expanded out to give
4 c y c y 2 z 4 4 c y c y 3 z 3 + c y c y 4 z 2 4 c y c x y z 4 + 14 c y c x y 2 z 3 10 c y c x y 3 z 2 3 x 2 y 2 z 2 0
This can be rearranged to
( 2 x y ) 2 ( y z ) 2 ( z x ) 2 + ( x y ) 2 ( 2 y z ) 2 ( z x ) 2 + ( x y ) 2 ( y z ) 2 ( 2 z x ) 2 5 ( x y ) 2 ( y z ) 2 ( z x ) 2
Now divide by
( x y ) 2 ( y z ) 2 ( z x ) 2 and we have
( 2 x y ) 2 ( x y ) 2 + ( 2 y z ) 2 ( y z ) 2 + ( 2 z x ) 2 ( z x ) 2 5.
flatantsmu

flatantsmu

Beginner2022-10-02Added 1 answers

This is a special case of the following inequality:
a , b , c ( m a n b a b ) 2 m 2 + n 2 ,
where m , n R and a , b , c are distinct reals.
The proof is simply completing the square: start by writing
m a n b a b = m + ( m n ) b a b
and
m c n a c a = n + ( m n ) c c a
and leave the middle term untouched first.
Let me know if still need further assistance.
EDIT: Completing the hint:
a , b , c ( m a n b a b ) 2 m 2 n 2 = ( m b n c b c ) 2 + ( m n ) 2 ( b 2 ( a b ) 2 + c 2 ( c a ) 2 ) + 2 ( m n ) ( m b a b + n c c a ) =
= ( m b n c b c ) 2 + ( m n ) 2 ( b 2 ( a b ) 2 + c 2 ( c a ) 2 ) + 2 ( m n ) b c ( m n ) a ( m b n c ) ( a b ) ( c a ) =
= ( m b n c b c ) 2 + ( m n ) 2 ( b 2 ( a b ) 2 + c 2 ( c a ) 2 + 2 b c ( a b ) ( c a ) ) 2 a ( m b n c ) ( m n ) ( a b ) ( c a ) =
= ( m b n c b c ) 2 + ( m n ) 2 ( b a b + c c a ) 2 2 a ( m n ) ( m b n c ) ( a b ) ( c a ) =
( m b n c b c ) 2 + ( m n ) 2 ( a ( c b ) ( a b ) ( c a ) ) 2 2 a ( m n ) ( m b n c ) ( a b ) ( c a ) =
= ( m b n c b c a ( m n ) ( c b ) ( a b ) ( c a ) ) 2 0.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?