A geometric inequality in a triangle If x,y,z>0, could it be: ( z(2z+x))/(z+x) b^2+( y(2y+x) )/(y+x ) c^2> (yz)/(y+z) a^2 for a triangle ABC, with a=BC, b=AC, c=AB?

Kareem Mejia

Kareem Mejia

Answered question

2022-11-16

A geometric inequality in a triangle
If x , y , z > 0 , could it be:
z ( 2 z + x ) z + x b 2 + y ( 2 y + x ) y + x c 2 > y z y + z a 2
for a triangle A B C , with a = B C , b = A C , c = A B ?
If b 2 + c 2 = a 2 , then the inequality holds, since
z ( 2 z + x ) z + x y z y + z = z 2 ( x + y + 2 z ) ( z + x ) ( y + z ) , y ( 2 y + x ) y + x y z y + z = y 2 ( x + 2 y + z ) ( z + x ) ( y + z )
If b 2 + c 2 > a 2 , then the inequality holds, since
z ( 2 z + x ) z + x b 2 + y ( 2 y + x ) y + x c 2 > y z y + z b 2 + y z y + z c 2 > y z y + z a 2
I can’t handle the case b 2 + c 2 < a 2 and I need some help

Answer & Explanation

Emma Singleton

Emma Singleton

Beginner2022-11-17Added 11 answers

By C-S
z ( 2 z + x ) z + x b 2 + y ( 2 y + x ) y + x c 2 ( b + c ) 2 z + x z ( 2 z + x ) + y + x y ( 2 y + x ) >
> a 2 z + x z ( 2 z + x ) + y + x y ( 2 y + x ) > a 2 z + x z ( z + x ) + y + x y ( y + x ) = a 2 y z y + z .

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?