I used the A.M.≥G.M. rule. ((xyzw)^2 . cot(9^o)tan(9^o)cot(27^o)tan(27^o))^{1/4}<=(x^2 cot (9°) + y^2 cot (27°) + z^2 cot (63°) + w^2 \cot (81°))/(4)

kunguwaat81

kunguwaat81

Answered question

2022-11-20

If x + y + z + w = 5 then the minimum value of x 2 cot ( 9 ° ) + y 2 cot ( 27 ° ) + z 2 cot ( 63 ° ) + w 2 cot ( 81 ° ) is?
I used the A . M . G . M . rule.
( ( x y z w ) 2 . cot ( 9 o ) tan ( 9 o ) cot ( 27 o ) tan ( 27 o ) ) 1 / 4   x 2 cot ( 9 ° ) + y 2 cot ( 27 ° ) + z 2 cot ( 63 ° ) + w 2 cot ( 81 ° ) 4
This reduces to :
4 ( x y z w ) 1 / 2 x 2 cot ( 9 ° ) + y 2 cot ( 27 ° ) + z 2 cot ( 63 ° ) + w 2 cot ( 81 ° ) ( 1 )
Now, I applied the same thing to the first equation:
x + y + z + w 4 ( x y w z ) 1 / 4
5 4 ( x y w z ) 1 / 4
25 16 ( x y w z ) 1 / 2 ( 2 )
Now I do not know what to do. From equation (2), I get the minimum value of ( x y w z ) 1 / 2 as (Am I right over here ?). In a nutshell, I am confused what to do next.

Answer & Explanation

luthersavage6lm

luthersavage6lm

Beginner2022-11-21Added 22 answers

By C-S
( x 2 cot 9 ° + y 2 cot 27 ° + z 2 cot 63 ° + w 2 cot 81 ° ) ( tan 9 + tan 27 + tan 63 + tan 81 ) ( x + y + z + w ) 2 = 25
The equality occurs for
( x cot 9 ° , y cot 27 ° , z cot 63 ° , w cot 81 ° ) | | ( tan 9 , tan 27 , tan 63 , tan 81 ) ,
Done!

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?