If A=begin{bmatrix}1 & 1 3 & 4 end{bmatrix} , B=begin{bmatrix}2 1 end{bmatrix} ,C=begin{bmatrix}-7 & 1 0 & 4 end{bmatrix},D=begin{bmatrix}3 & 2 & 1 en

vestirme4

vestirme4

Answered question

2020-10-21

If A=[1134],B=[21],C=[7104],D=[321] and E=[234121]
Find , if possible,
a) A+B , C-A and D-E b)AB, BA , CA , AC , DA , DB , BD , EB , BE and AE c) 7C , -3D and KE

Answer & Explanation

Yusuf Keller

Yusuf Keller

Skilled2020-10-22Added 90 answers

Step 1
We can add and subtract matrices only which of them have same order.
For multiplication of two matrices it is necessary that no. of columns of first matrix must be equal to no of rows in second matrix.
Step 2
Here,
A=[1134],B=[21],C=[7104],D=[321] and E=[234121]
a) A+B , order of A is 2×2 order of B(2×1)
So, Not possible
C-A
CA=[7104][1134]=[71110344]=[8030]
CA=[8030]
D-E
D-E have different orders
So,not possible
b) AB
AB=[1134][21]=[2+16+4]=[310]
Hence
AB=[310]
BA here [B]2×1[A]2×2
number of columns of B number of row in A
So,not possible
CA
CA=[7104][1134]=[7+37+40+120+16]=[431216]
Hence
CA=[431216]
AC
AC=[1134][7104]=[71+4213+16]=[752119]
Hence,
AC=[752119]
DA
[D]1×3[A]2×2
Number columns in [D] number rows in [A]
So,not possible DB . Not possible BD. Not possible
EB.[E]2×3[B]2×1
Not possible
BE
[B]2×1[E]2×3
Not possible
AE
AE=[1134][234121]=
=[2+13+2416+49+8124]=[35310178]
Hence,
AE=[35310178]
(c)7C=7[7104]=[497028]
Jeffrey Jordon

Jeffrey Jordon

Expert2022-01-29Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?