Use the Binomial Theorem to expand the binomial, (3x+y)^3 and express the result in simplified form

arenceabigns

arenceabigns

Answered question

2021-09-13

Use the Binomial Theorem to expand the binomial, (3x+y)3 and express the result in simplified form.

Answer & Explanation

Sally Cresswell

Sally Cresswell

Skilled2021-09-14Added 91 answers

Given that:
\(\displaystyle{\left({3}{x}+{y}\right)}^{{3}}\)
The standard form of binomial theorem for any positive integer “n” is given by,
\(\displaystyle{\left({a}+{b}\right)}^{{n}}={C}_{{0}}{a}^{{n}}+{C}_{{1}}{a}^{{{n}-{1}}}{b}+{C}_{{2}}{a}^{{{n}-{2}}}{b}^{{2}}+\ldots+{C}_{{{n}-{1}}}{a}\cdot{b}^{{{n}-{1}}}+{C}_{{n}}{b}^{{n}}\)
Here, a=3x, b=y, n=3
To expand the given polynomials
\(\displaystyle{\left({3}{x}+{y}\right)}^{{3}}={C}_{{0}}{\left({3}{x}\right)}^{{3}}+{C}_{{1}}{\left({3}{x}\right)}^{{{3}-{1}}}{y}+{C}_{{2}}{\left({3}{x}\right)}^{{{3}-{2}}}{y}^{{2}}+{C}_{{3}}{\left({3}{x}\right)}^{{{3}-{3}}}{y}^{{3}}\)
\(\displaystyle={\frac{{{3}!}}{{{0}!{\left({3}-{0}\right)}!}}}{\left({27}{x}^{{3}}\right)}+{\frac{{{3}!}}{{{1}!{\left({3}-{1}\right)}!}}}{\left({3}{x}\right)}^{{2}}{y}+{\frac{{{3}!}}{{{2}!{\left({3}-{2}\right)}!}}}{\left({3}{x}\right)}^{{1}}{y}^{{2}}+{\frac{{{3}!}}{{{3}!{\left({3}-{3}\right)}!}}}{\left({3}{x}\right)}^{{0}}{y}^{{3}}\)
\(\displaystyle{\frac{{{3}!}}{{{1}\cdot{3}!}}}{\left({27}{x}^{{3}}\right)}+{\frac{{{3}\cdot{2}\cdot{1}}}{{{1}{\left({2}\times{1}\right)}}}}\)\(9x^2y+\frac{3\cdot2\cdot1}{(2\times1)\cdot1}3xy^2+\frac{3\cdot2\cdot1}{3\cdot2\cdot1(1)}y^3\)
\(\displaystyle={1}\cdot{\left({27}{x}^{{3}}\right)}+{3}{\left({9}{x}^{{2}}{y}\right)}+{3}{\left({3}{x}{y}^{{2}}\right)}+{y}^{{3}}\)
\(\displaystyle={27}{x}^{{3}}+{27}{x}^{{2}}{y}+{9}{x}{y}^{{2}}+{y}^{{3}}\)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?