Find the inverse of each of the following matrices. begin{bmatrix}1 & 0&1-1&1&1 -1&-2&-3 end{bmatrix}

postillan4

postillan4

Answered question

2020-12-05

Find the inverse of each of the following matrices.
[101111123]

Answer & Explanation

Nathalie Redfern

Nathalie Redfern

Skilled2020-12-06Added 99 answers

Step 1
Given matrix is
A=[101111123]
firstly, we will find all cofactors by using the formula
Aij=(1)i+jMij
where Mij are minors.
A11=(1)1+1(3+2)=1
A12=(1)1+2(3+1)=4
A13=(1)1+3(2+1)=3
A21=(1)2+1(0+2)=2
A22=(1)2+2(3+1)=2
A23=(1)2+3(2+0)=2
A31=(1)3+1(01)=1
A32=(1)3+2(1+1)=2
A33=(1)3+3(1+0)=1
Now, Adjoint A matrix is transpose of cofactors matrix.
AdjA=[143222121]T=[121422321]
Step 2
Now, we ill evaluate the determinant of matrix A
|A|=a11A11+a12A12+a13A13
=1(1)+0(4)+1(3)=2
Since, determinant of A is non-zero, therefore, inverse matrix of A exists and is obtained as
A1=1|A|AdjA
A1=12[121422321]
Step 3
Ans:
A1=12[121422321]
Jeffrey Jordon

Jeffrey Jordon

Expert2022-01-27Added 2605 answers

Answer is given below (on video)

Jeffrey Jordon

Jeffrey Jordon

Expert2022-08-23Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?