Find \sin \theta\ if\ \cot \theta = - 2\ and\

Julia White

Julia White

Answered question

2021-12-21

Find sinθ if cotθ=2 and cosθ<0.

Answer & Explanation

braodagxj

braodagxj

Beginner2021-12-22Added 38 answers

Step 1 
To determine the value of sin(θ)
Step 2 
Given information: 
The following table lists the trigonometric functions. 
cot(θ)=2  and  cos(θ)<0 
Step 3 
Used concept: 
Pythagoras theorem: 
If the base is x, the hypotenuse is z, and y is the perpendicular,
Step 4 
Calculation: 
cot(θ) is given below. 
cot(θ)=baseperpendicar 
=xy 
=21 
so, x=2  and  y=1 
Step 5 
From the Pythagoras theorem. 
z2=x2+y2 
=(2)2+(1)2 
=4+1 
z2=5 
z=±5 
Step 6 
Since cos(θ)<0, so take the value of z with positive sign. Then 
The value of sin(θ) is given below. 
sin(θ)=perpendicarhypoteνse 
=yz 
=15 
sin(θ)=15

Ronnie Schechter

Ronnie Schechter

Beginner2021-12-23Added 27 answers

Start with the identity:
1+cot2(θ)=csc2(θ)
Explanation:
Substitute cot2(θ)=(2)2:
1+(2)2=csc2(θ)
5=csc2(θ)
Substitute csc2(θ)=1sin2(θ)
5=1sin2(θ)
sin2(θ)=15
sin(θ)=±55
Because we are told that cos(θ)<0 and cot(θ)=2, we know that the sine function must be positive in this quadrant:
sin(θ)=55
Jeffrey Jordon

Jeffrey Jordon

Expert2021-12-27Added 2605 answers

Given was cotθ=21 and cot is the reciprocal of tan
therefore
tanθ=12
Since the adjacent sides b=-2 and the opposite side a=1 are already known, find the hypotenuse c. That is,
c2=a2+b2
c=12+(2)2
c=5
Solving for sinθ
sinθ =oppositesides*hypotenuse=ab
sinθ=15 need to rationalize
sinθ=(15)×55
sinθ=55
Note that the adjacent side of the angle is -2 so the angle θ is found in the 2nd quadrant.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?