how to show that \csc x-\csc(\frac{\pi}{3}+x)+\csc(\frac{\pi}{3}-x)=3 \csc 3x? My attempt: LHS=\csc x−\csc(\frac{\pi}{3}+x)+\csc(\frac{\pi}{3}-x) =\frac{1}{\sin

Tiffany Russell

Tiffany Russell

Answered question

2021-12-30

how to show that cscxcsc(π3+x)+csc(π3x)=3csc3x?
My attempt:
LHS=cscxcsc(π3+x)+csc(π3x)
=1sinx1sin(π3+x)+1sin(π3x)
=sinxsin(π3+x)+sin(π3+x)sin(π3x)sin(π3x)sinxsinxsin(π3+x)sin(π3x)
=4sin3x(sinxsin(π3+x)+sin(π3+x)sin(π3x)sin(π3)sinx)
=4sin3x(sinxsin(π3+x)sin(π3x)sin(sinxsin(π3+x)))
=4sin3x(sinxsin(π3+x)sin(π3x)(2sinπ6cos(x+π6)))

Answer & Explanation

Jordan Mitchell

Jordan Mitchell

Beginner2021-12-31Added 31 answers

We have
sinxsin(π3+x)+sin(π3x)cos(x+π6)
=sin(x)[sin(π3)cos(x)+cos(π3)sin(x)]+(sin(π3)cos(x)cos(π3)sin(x))(cos(π6)cosxsin(π6)sin(x))
=sin(x)[32cos(x)+12sin(x)]+(32cos(x)12sin(x))(32cos(x)12sin(x))
=32sin(x)cos(x)+12sin2x+34cos2(x)32cos(x)sin(x)+14sin2(x)
or
34(sin2(x)+cos2(x))=34
Mason Hall

Mason Hall

Beginner2022-01-01Added 36 answers

1sinx1sin(π3+x)+1sin({{x)=
=sin(π3x)sin(π3+x)+sinx(sin(π3+x)sin(π3x))sinxsin(π3+x)sin(π3x)
=12(cos2xcos2π3)+sinx2sinxcosπ3sinx(32cosx+12sinx)(32cosx12sinx)
=12sin2x+14+sin2xsinx(34cos2x14sin2x)=3sinx(3(1sin2x)sin2x)=3sin3x
Vasquez

Vasquez

Expert2022-01-09Added 669 answers

Using the identitiessinAsinB=12(cos(AB)cos(A+B))sinAcosB=12(sin(A+B)+sin(AB))we havesinxsin(π3+x)+sin(π3x)cos(x+π6)=12(cos(π3)cos(2x+π3)+sinπ2+sin(π62x))=12(12+1cos(2x+π3)+cos(2x+π3))=34

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?