Simplification of \cos^4(x) + \sin^4(x) (\sin x)^4+(\cos x)^4= (1-\cos2x)^2/4 + (1+\cos2x)^2/4 =

jelentetvq

jelentetvq

Answered question

2022-01-28

Simplification of cos4(x)+sin4(x)
(sinx)4+(cosx)4=(1cos2x)24+(1+cos2x)24
=12cos2x+(cos2x)2+1+2cos2x+(cos2x)24
=1+(cos2x)22
its correct?

Answer & Explanation

Alfred Mueller

Alfred Mueller

Beginner2022-01-29Added 10 answers

A faster way:
sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x=12sin2xcos2x
=112(2sinxcosx)2=112sin22x
=1121cos4x2=3+cos4x4
Aiden Cooper

Aiden Cooper

Beginner2022-01-30Added 14 answers

(eixeix2i)4+(eix+eix2)4=124((eixeix)4+(eix+eix)4)
but
(a+b)4+(ab)4=2(a4+6a2b2+b4)
hence
sin4x+cos4x=123(2cos(4x)+6)=14(cos(4x)+3)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?