How to prove that: \tan(3\pi/11)+4\sin(2\pi/11)=\sqrt{11}

Sarah-Louise Prince

Sarah-Louise Prince

Answered question

2022-02-27

How to prove that:
tan(3π11)+4sin(2π11)=11

Answer & Explanation

mtakadamu9i5

mtakadamu9i5

Beginner2022-02-28Added 8 answers

Since tan3π11+4sin2π11>0, it's enough to prove that
(sin3π11+4sin2π11cos3π11)2=11cos23π11
or
(sin3π11+2sin5π112sinπ11)2=11cos23π11
or
1cos6π11+44cos10π11+44cos2π11+4cos2π114cos8π114cos2π11+4cos4π118cos4π118cos4π11+8cos6π11
=11+11cos6π11
or
k=15cos2kπ11=12
or
k=152sinπ11cos2kπ11=sinπ11
or
k=15(sin(2k+1)π11sin(2k1)π11)=sinπ11
or
sin11π11sinπ11=sinπ11
Done!
bedevijuo3e

bedevijuo3e

Beginner2022-03-01Added 6 answers

x=tan(3π11)+4sin(2π11)
For simpliying equation, I used
u=π11
and
11u=π
transformations,
Hence,
x=tan3u+4sin2u
2cos3ux=2cos3utan3u+8cos3usin2u
Hence,
2cos3ux=2sin3u+8cos3usin2u
After squaring both sides,
(2cos3ux)2=(2sin3u+8cos3usin2u)2
4(cos3u)2x2=4(sin3u)2+32sin3ucos3usin2u+64(cos3u)2(sin2u)2
=2(1cos6u)+16sin6usin2u+16(1+cos6u)(1cos4u)
=22cos6u+8cos4u8cos8u+16+16cos6u16cos4u16cos6ucos4u
=18+14cos6u8cos4u8cos8u8(cos10u+cos2u)
=18+14cos6u8cos4u8co8u8cos10u8cos2u
After multiplying both sides with sinu,

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?