Suppose that a polynomial function of degree 4

Answered question

2022-03-22

Suppose that a polynomial function of degree 4 with rational coefficient has the given number as zeros . Find the other zeros.

 

-1, √3, 11/3

Answer & Explanation

Vasquez

Vasquez

Expert2022-04-28Added 669 answers

-1 , 3 , 113

Roots are the points where the graph intercepts with the x-axis (y=0).

y=0 at the roots

The root at x=-1 was found by solving for x when x-(-1)=y and y=0.

The factor is x+1

The root at x=3 was found by solving for x when x-(3)=y and y=0.

The factor is x-3

The root at x=113 was found by solving for x when x-(113)=y and y=0.

The factor is x-113

Combine all the factors into a single equation.

y=(x+1)(x-3)(x-113)

Multiply all the factors to simplify the equation y=(x+1)(x-3)(x-113).

Expand (x+1)(x-3) using the FOIL Method.

Apply the distributive property.

y=(x(x-3)+1(x-3))(x-113)

Apply the distributive property.

y=(xx+x(-3)+1(x-3))(x-113)

Apply the distributive property.

y=(xx+x(-3)+1x+1(-3))(x-113)

Simplify each term.

Multiply x by x.

y=(x2+x(-3)+1x+1(-3))(x-113)

Multiply xx by 11.

y=(x2+x(-3)+x+1(-3))(x-113)

Multiply -3 by 1.

y=(x2+x(-3)+x-3)(x-113)

Expand (x2+x(-3)+x-3)(x-113) by multiplying each term in the first expression by each term in the second expression.

y=x2x+x2(-113)+x(-3)x+x(-3)(-113)+xx+x(-113)-3x-3(-113)

Simplify each term.

Multiply x2 by x by adding the exponents.

Tap for more steps...

y=x3+x2(-113)+x(-3)x+x(-3)(-113)+xx+x(-113)-3x-3(-113)

Combine x2 and 113.

y=x3-x2113+x(-3)x+x(-3)(-113)+xx+x(-113)-3x-3(-113)

Move 11 to the left of x2.

y=x3-11x23+x(-3)x+x(-3)(-113)+xx+x(-113)-3x-3(-113)

Multiply x by x by adding the exponents.

y=x3-11x23+x2(-3)+x(-3)(-113)+xx+x(-113)-3x-3(-113)

Multiply x(-3)(-113).

y=x3-11x23+x2(-3)+3(x11)3+xx+x(-113)-3x-3(-113)

Move 11 to the left of 3x.

y=x3-11x23+x2(-3)+11(3x)3+xx+x(-113)-3x-3(-113)

Multiply x by x.

y=x3-11x23+x2(-3)+113x3+x2+x(-113)-3x-3(-113)

Combine x and 113.

y=x3-11x23+x2(-3)+113x3+x2-x113-3x-3(-113)

Move 11 to the left of x.

y=x3-11x23+x2(-3)+113x3+x2-11x3-3x-3(-113)

Multiply-3(-113).

y=x3-11x23+x2(-3)+113x3+x2-11x3-3x+3113

Move 11 to the left of 3.

y=x3-11x23+x2(-3)+113x3+x2-11x3-3x+1133

To write x2 as a fraction with a common denominator, multiply by 33.

y=x3+x2(-3)+113x3-11x23+x233-11x3-3x+1133

Simplify terms.

Combine x2 and 33.

y=x3+x2(-3)+113x3-11x23+x233-11x3-3x+1133

Combine the numerators over the common denominator.

y=x3+x2(-3)+113x3+-11x2+x233-11x3-3x+1133

Combine the numerators over the common denominator.

y=x3+x2(-3)-3x+113x-11x2+x23-11x+1133

Move 3 to the left of x2.

y=x3+x2(-3)-3x+113x-11x2+3x2-11x+1133

Simplify by adding terms.

Add -11x2 and 3x2.

y=x3+x2(-3)-3x+113x-8x2-11x+1133

Reorder 113x and -8x2.

y=x3+x2(-3)-3x+-8x2+113x-11x+1133

To write x3 as a fraction with a common denominator, multiply by 33.

y=x2(-3)-3x+x333+-8x2+113x-11x+1133

Simplify terms.

Combine x3 and 33.

y=x2(-3)-3x+x333+-8x2+113x-11x+1133

Combine the numerators over the common denominator.

y=x2(-3)-3x+x33-8x2+113x-11x+1133

Move 3 to the left of x3.

y=x2(-3)-3x+3x3-8x2+113x-11x+1133

To write x2(-3) as a fraction with a common denominator, multiply by 33.

y=-3x+x2(-3)33+3x3-8x2+113x-11x+1133

Simplify terms.

Combine x2(-3) and 33.

y=-3x+x2(-3)33+3x3-8x2+113x-11x+1133

Combine the numerators over the common denominator.

y=-3x+x2(-3)3+3x3-8x2+113x-11x+1133

Simplify the numerator.

Multiply 3 by -1.

y=-3x+x2(-33)+3x3-8x2+113x-11x+1133

Reorder terms.

y=-3x+3x3-8x2-3x23+11x3-11x+1133

To write -3x as a fraction with a common denominator, multiply by 33.y=-3x33+3x3-8x2-3x23+11x3-11x+1133

Simplify terms.

Combine -3x and 33.

y=-3x33+3x3-8x2-3x23+11x3-11x+1133

Combine the numerators over the common denominator.

y=-3x3+3x3-8x2-3x23+11x3-11x+1133

Simplify the numerator.

Multiply 3 by -1.

y=-33x+3x3-8x2-3x23+11x3-11x+1133

Reorder the factors of -33x.

y=-3x3+3x3-8x2-3x23+11x3-11x+1133

Add -3x3 and 11x3.

y=3x3-8x2-3x23+8x3-11x+1133

Split the fraction 3x3-8x2-3x23+8x3-11x+1133 into two fractions.

y=3x3-8x2-3x23+8x3-11x3+1133

Split the fraction 3x3-8x2-3x23+8x3-11x3 into two fractions.

y=3x3-8x2-3x23+8x33+-11x3+1133

Split the fraction 3x3-8x2-3x23+8x33 into two fractions.

y=3x3-8x2-3x233+8x33+-11x3+1133

Split the fraction 3x3-8x2-3x233 into two fractions.

y=3x3-8x23+-3x233+8x33+-11x3+1133

Split the fraction 3x3-8x23 into two fractions.

y=3x33+-8x23+-3x233+8x33+-11x3+1133

Cancel the common factor of 3.

y=3x33+-8x23+-3x233+8x33+-11x3+1133

Divide x3 by 1.

y=x3+-8x23+-3x233+8x33+-11x3+1133

Move the negative in front of the fraction.

y=x3-8x23+-3x233+8x33+-11x3+1133

Cancel the common factor of -3 and 3.

Factor 3 out of -3x23.

y=x3-8x23+3(-x23)3+8x33+-11x3+1133

Cancel the common factors.

Factor 3 out of 3.

y=x3-8x23+3(-x23)3(1)+8x33+-11x3+1133

Cancel the common factor.

y=x3-8x23+3(-x23)31+8x33+-11x3+1133

Rewrite the expression.

y=x3-8x23+-x231+8x33+-11x3+1133

Divide -x23 by 1.

y=x3-8x23-x23+8x33+-11x3+1133

Move the negative in front of the fraction.

y=x3-8x23-x23+8x33-11x3+1133

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?