Proving that \(\displaystyle{\sin{{\left({z}+{w}\right)}}}={\sin{{\left({w}\right)}}}{\cos{{\left({z}\right)}}}+{\sin{{\left({z}\right)}}}{\cos{{\left({w}\right)}}}\) using complex exponentials

sexoagotadorogyr

sexoagotadorogyr

Answered question

2022-03-30

Proving that sin(z+w)=sin(w)cos(z)+sin(z)cos(w) using complex exponentials

Answer & Explanation

Luciana Cline

Luciana Cline

Beginner2022-03-31Added 14 answers

Consider the RHS,
sinzcosw+coszsinw
=eizeiz2ieiw+eiw2+eiweiw2ieiz+eiz2
[By doing the usual calculation which is skipped]
=2ei(z+w)ei(z+w)4i
=ei(z+w)ei(z+w)2i
=sin(z+w)
Proved.
Mercedes Chang

Mercedes Chang

Beginner2022-04-01Added 15 answers

sin(z+w)
=exp(i(z+w))exp(i(z+w))2i
=exp(iz)exp(iw)exp(iz)exp(iw)2i
=exp(iz)exp(iw)exp(iz)exp(iw)+exp(iz)exp(iw)exp(iz)exp(iw)4i
+exp(iz)exp(iw)exp(iz)exp(iw)+exp(iz)exp(iw)exp(iz)exp(iw)4i
=exp(iz)(exp(iw)exp(iw))+exp(iz)(exp(iw)exp(iw))4i
+exp(iw)(exp(iz)exp(iz))+exp(iw)(exp(iz)exp(iz))4i
=(exp(iz)+exp(iz))(exp(iw)exp(iw))22i
+(exp(iw)+exp(iw))(exp(iz)exp(iz))22i
=cos(z)sin(w)+cos(w)sin(z)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?