Prove \(\displaystyle{\cot{{\left({x}\right)}}}+{\cot{{\left({\frac{{\pi}}{{{3}}}}+{x}\right)}}}+{\cot{{\left({\frac{{{2}\pi}}{{{3}}}}+{x}\right)}}}={\frac{{{3}-{9}{{\tan}^{{2}}{x}}}}{{{3}{\tan{{x}}}-{{\tan}^{{3}}{x}}}}}\)

Alexis Alexander

Alexis Alexander

Answered question

2022-03-30

Prove cot(x)+cot(π3+x)+cot(2π3+x)=39tan2x3tanxtan3x

Answer & Explanation

clarkchica44klt

clarkchica44klt

Beginner2022-03-31Added 17 answers

tan3x=3tanxtan3x13tan2x
cot3x=13tan2x3tanxtan3x (1)
Multiplying the numerator & the denominator by cot3x
cot3x=cot3x3cotx3cot2x1 (2)
If cot3x=cot3Atan3x=tan3A3x=nπ+3A where n is any integer
x=nπ3+A where n0,1,2 (mod 3)
Using (2), cot3x3cotx3cot2x1=cot3x=cot3A
cot3x3cot3Acot2x3cotx+cot3A=0
Using Vieta's formula, n=02cot(nπ3+A)=3cot3A1=313tan2A3tanAtan3A (using (1))

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?