Evaluate \(\displaystyle\sum^{{{13}}}_{\left\lbrace{k}={1}\right\rbrace}{\frac{{{\sin{{\left({30}^{\circ}{k}+{45}^{\circ}\right)}}}}}{{{\sin{{\left({30}^{\circ}{\left({k}-{1}\right)}+{45}^{\circ}\right)}}}}}}\) Put \(\displaystyle{30}^{\circ}=\alpha,{45}^{\circ}=\beta\). Then \(\displaystyle{S}\:=\sum^{{{13}}}_{\left\lbrace{k}={1}\right\rbrace}{\frac{{{\sin{{\left(\alpha{k}+\beta\right)}}}}}{{{\sin{{\left(\alpha{\left({k}-{1}\right)}+\beta\right)}}}}}}=\sum^{{{13}}}_{\left\lbrace{k}={1}\right\rbrace}{\frac{{{\sin{{\left(\alpha{\left({k}-{1}\right)}+\beta+\alpha\right)}}}}}{{{\sin{{\left(\alpha{\left({k}-{1}\right)}+\beta\right)}}}}}}\) \(\displaystyle=\sum^{{{13}}}_{\left\lbrace{k}={1}\right\rbrace}{\frac{{{\sin{{\left(\alpha{\left({k}-{1}\right)}+\beta\right)}}}{\cos{\alpha}}+{\cos{

talpajocotefnf3

talpajocotefnf3

Answered question

2022-04-04

Evaluate
{k=1}13sin(30k+45)sin(30(k1)+45)
Put 30=α,45=β. Then
S={k=1}13sin(αk+β)sin(α(k1)+β)={k=1}13sin(α(k1)+β+α)sin(α(k1)+β)
={k=1}13sin(α(k1)+β)cosα+cos(α(k1)+β)sinαsin(α(k1)+β)
=cosα{k=1}131+sinα{k=1}13cot(α(k1)+β)
=3213+12{k=1}13cot(α(k1)+β)
Could some help me to solve it, thanks.

Answer & Explanation

Lana Hamilton

Lana Hamilton

Beginner2022-04-05Added 12 answers

You are on the right track. Note that cot(x)=tan(90x) and tan(x)=tan(x+180). Hence
k=113cot((k1)30+45)=k=012tan(45k30)
=1+k=16tan(45k30)+k=16tan(45(k+6)30)
=1+2k=16tan(45k30)
=1+2(tan(15)+tan(15)+tan(45)+tan(75)+tan(105)+tan(135))
=1+2(tan(45)tan(75)+tan(180+75)+tan(180+45))
=1

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?