Evaluate for any integer, n \(\displaystyle{\int_{{-{\frac{{{1}}}{{{2}}}}}}^{{{\frac{{{1}}}{{{2}}}}}}}{\frac{{{{\sin}^{{4}}{\left({n}\pi{x}\right)}}}}{{{{\sin}^{{2}}{\left(\pi{x}\right)}}}}}\)

navantegipowh

navantegipowh

Answered question

2022-04-05

Evaluate for any integer, n
1212sin4(nπx)sin2(πx)

Answer & Explanation

Ishaan Stout

Ishaan Stout

Beginner2022-04-06Added 14 answers

Let α=2x and ϕ=x then we have
cos(x)+cos(3x)++cos((2m+1)x)=cos(ϕ+0α)+cos(ϕ+1α)+..+cos(ϕ+mα)
=sin(m+1)α2cos(ϕ+mα2)sinα2
=sin[(m+1)x]cos[(m+1)x]sinx
=sin[2(m+1)x]2sinx
Therefore
sin4[2(m+1)x]sin2x=24sin2x(cos(x)+cos(3x)++cos((2m+1)x))4
Therefore
1212sin4[2(m+1)x]sin2xdx=241212sin2x(cos(x)+cos(3x)++cos((2m+1)x))4dx
The latter is tedious but doable for any value of m.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?