Evaluating \(\displaystyle{\left({\cot{{\frac{{\pi}}{{{18}}}}}}-{3}{\cot{{\frac{{\pi}}{{{6}}}}}}\right)}\cdot{\left({\csc{{\frac{{\pi}}{{{9}}}}}}+{2}{\cot{{\frac{{\pi}}{{{9}}}}}}\right)}\) Try: \(\displaystyle{\cot{{\frac{{\pi}}{{{18}}}}}}{\csc{{\frac{{\pi}}{{{9}}}}}}-{3}\sqrt{{{3}}}{\csc{{\frac{{\pi}}{{{9}}}}}}+{2}{\cot{{\frac{{\pi}}{{{18}}}}}}{\cot{{\frac{{\pi}}{{{9}}}}}}-{6}\sqrt{{{3}}}{\cot{{\frac{{\pi}}{{{9}}}}}}\)

alparcero97oy

alparcero97oy

Answered question

2022-04-03

Evaluating (cotπ183cotπ6)(cscπ9+2cotπ9)
Try:
cotπ18cscπ933cscπ9+2cotπ18cotπ963cotπ9

Answer & Explanation

mistemePietsffi

mistemePietsffi

Beginner2022-04-04Added 8 answers

cotx3cot3x=cosxsin3x3(cos3xsinx)sinxsin3x
Again,
2cosxsin3x3(2cos3xsinx)=sin4x+sin2x3(sin4xsin2x)
=4sin2x2sin4x
=4sin2x(1cos2x)
=4sin2x(2sin2x)
Finally,
csc2x+2cot2x=1+2cos2xsin2x
=1+2(12sin2x)sin2x
=sin3xsinxsin2x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?