How do I prove \(\displaystyle{\cos{{\left({4}{A}\right)}}}={{\cos}^{{4}}{A}}-{6}{{\cos}^{{2}}{A}}{{\sin}^{{2}}{A}}+{{\sin}^{{4}}{A}}\) ?

Magdalena Warren

Magdalena Warren

Answered question

2022-04-12

How do I prove
cos(4A)=cos4A6cos2Asin2A+sin4A ?

Answer & Explanation

Jax Burns

Jax Burns

Beginner2022-04-13Added 13 answers

cos(4A)=cos(2A+2A)
=cos2(2A)sin2(2A)
=cos(2A)cos(2A)(2sin(2A)cos(2A))2
=(cos2(2A)sin2(2A))(cos2(2A)sin2(2A))4cos2(2A)sin2(2A)
=(cos4(2A)2cos2(2A)sin2(2A)+sin4(2A))4cos2(2A)sin2(2A)
=cos4(2A)6cos2(2A)sin2(2A)+sin4(2A)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?