Simplify \frac{1-\sin(x)+\cos(x)}{1+\sin(x)+\cos(x)}

chingli20013a1

chingli20013a1

Answered question

2022-04-27

Simplify 1sin(x)+cos(x)1+sin(x)+cos(x)

Answer & Explanation

Tyler Velasquez

Tyler Velasquez

Beginner2022-04-28Added 19 answers

1sinx+cosx1+sinx+cosx=sin2{(x2)+cos2{(x2)}2sin{(x2)}cos{(x2)}+cos2{(x2)}sin2{(x2)}}sin2{(x2)+cos2{(x2)}+2sin{(x2)}cos{(x2)}+cos2{(x2)}sin2{(x2)}}=
=2cos2{(x2)}2sin{(x2)}cos{(x2)}2cos2{(x2)}+2sin{(x2)}cos{(x2)}=
=cos{(x2)}sin{(x2)}cos{(x2)}+sin{(x2)}={(cos{(x2)}sin{(x2)})}2(cos{(x2)}+sin{(x2)})(cos{(x2)}+sin{(x2)})=
=1sin{x}cos{x}
narratz5dz

narratz5dz

Beginner2022-04-29Added 13 answers

cos2y=12sin2y=2cos2y1,sin2y=2sinycosy
1sin2y+cos2y1+sin2y+cos2y=2cos2y2sinycosy2cos2y+2sinycosy=cosysinycosy+siny
(i)=(cosysiny)2cos2ysin2y=1sin2ycos2y
OR
(ii)=cos2ysin2y(cosy+siny)2=cos2y1+sin2y

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?