Prove that ( cot &#x2061;<!-- ⁡ --> A + cot &#x2061;<!-- ⁡ --> B ) (

Marco Villanueva

Marco Villanueva

Answered question

2022-05-14

Prove that ( cot A + cot B ) ( cot B + cot C ) ( cot A + cot C ) = csc A csc B csc C

Answer & Explanation

tomatoland45wt8wm

tomatoland45wt8wm

Beginner2022-05-15Added 19 answers

HINT:
cot A + cot B = sin ( B + A ) sin A sin B = sin ( π C ) sin A sin B = ?
indimiamimactjcf

indimiamimactjcf

Beginner2022-05-16Added 3 answers

Notice, in A B C, A + B + C = π = 180
Now, we have
L H S = ( cot A + cot B ) ( cot B + cot C ) ( cot C + cot A )
= ( cos A sin A + cos B sin B ) ( cos B sin B + cos C sin C ) ( cos C sin C + cos A sin A )
= ( sin A cos B + cos A sin B sin A sin B ) ( sin B cos C + cos B sin C sin B sin C ) ( sin C cos A + cos C sin A sin C sin A )
= ( sin ( A + B ) sin A sin B ) ( sin ( B + C ) sin B sin C ) ( sin ( C + A ) sin C sin A )
= ( sin ( 180 C ) sin A sin B ) ( sin ( 180 A ) sin B sin C ) ( sin ( 180 B ) sin C sin A )
= ( sin C sin A sin B ) ( sin A sin B sin C ) ( sin B sin C sin A )
= 1 sin A sin B sin C
= c o s e c A c o s e c B c e s e c C = R H S

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?