i have to prove this cos &#x2061;<!-- ⁡ --> 3 x </mrow>

Jamir Melendez

Jamir Melendez

Answered question

2022-05-17

i have to prove this
cos 3 x sin 2 x sin 4 x + cos 5 x sin 4 x sin 6 x + cos 7 x sin 6 x sin 8 x + cos 9 x sin 8 x sin 10 x = 1 2 csc x ( csc 2 x csc 10 x )

Answer & Explanation

candydulce168nlid

candydulce168nlid

Beginner2022-05-18Added 14 answers

The right side looks like a result of a telescopic sum, so we'll try to prove
cos ( n x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x ) = 1 2 csc ( x ) ( csc ( ( n 1 ) x ) csc ( ( n + 1 ) x ) )
Why this? It may not be true, but if it is, we have
cos 3 x sin 2 x sin 4 x + cos 5 x sin 4 x sin 6 x + cos 7 x sin 6 x sin 8 x + cos 9 x sin 8 x sin 10 x = 1 2 csc x ( csc 2 x csc 4 x + csc 4 x csc 6 x + csc 6 x csc 8 x + csc 8 x csc 10 x ) = 1 2 csc x ( csc 2 x csc 10 x )
So, we'll start operating the right side. We have
1 2 csc ( x ) ( csc ( ( n 1 ) x ) csc ( ( n + 1 ) x ) ) = 1 2 sin ( x ) ( 1 sin ( ( n 1 ) x ) 1 sin ( ( n + 1 ) x ) ) = 1 2 sin ( x ) sin ( ( n + 1 ) x ) sin ( ( n 1 ) x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x ) = sin ( ( n + 1 ) x ) sin ( ( n 1 ) x ) 2 sin ( x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x ) = ( sin ( n x ) cos ( x ) + sin ( x ) cos ( n x ) ) ( sin ( n x ) cos ( x ) sin ( x ) cos ( n x ) ) 2 sin ( x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x ) = 2 sin ( x ) cos ( n x ) 2 sin ( x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x ) = cos ( n x ) sin ( ( n 1 ) x ) sin ( ( n + 1 ) x )
And we're ready
Alissa Hutchinson

Alissa Hutchinson

Beginner2022-05-19Added 5 answers

Hint: Observe
cos 3 x sin 2 x sin 4 x = 1 2 sin x ( 1 sin 2 x 1 sin 4 x )
since
1 sin 2 x 1 sin 4 x =   sin 4 x sin 2 x sin 2 x sin 4 x =   sin 3 x cos x + sin x cos 3 x sin 3 x cos x + sin x cos 3 x sin 2 x sin 4 x =   2 cos 3 x sin x sin 2 x sin 4 x .
Telescoping sum.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?