Show that 1 + sin &#x2061;<!-- ⁡ --> A </mrow>

Nylah Burnett

Nylah Burnett

Answered question

2022-05-20

Show that 1 + sin A cos A + cos B 1 sin B = 2 sin A 2 sin B sin ( A B ) + cos A cos B

Answer & Explanation

soymmernenx

soymmernenx

Beginner2022-05-21Added 10 answers

The LHS can be written as 1 + sin A cos A + 1 + sin B cos B
= cos A + cos B + sin A cos B + cos A sin B cos A cos B
Multiply Neumaretor and Denominator by sin ( A B ) + cos A cos B = ( cos A + sin A cos B ) ( cos B + cos A sin B )
= ( cos A + sin A cos B ) 2 ( cos B + cos A sin B ) 2 cos A cos B [ . . . ]
= cos 2 A + sin 2 A cos 2 B + 2 sin A cos A cos B cos 2 B cos 2 A sin 2 B 2 cos A cos B sin B cos A cos B [ . . . ]
Note that sin 2 A cos 2 B cos 2 A sin 2 B = ( 1 cos 2 A ) cos 2 B cos 2 A ( 1 cos 2 B ) = cos 2 B cos 2 A
So LHS becomes
2 sin A cos A cos B 2 cos A cos B sin B cos A cos B [ . . . ]
= 2 sin A 2 sin B sin ( A B ) + cos A cos B = R H S

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?