boloman0z

2022-06-26

Is it possible to quantify the number of dimensions in combinatorial spaces. The space I am particularly interested is all partitions of a set, bounded by the Bell number, where objects in this space are particular partitions.

Blaine Foster

Beginner2022-06-27Added 33 answers

It makes sense to consider some sets of combinatorial objects as spaces (or polytopes) and therefore discuss dimensionality (e.g. the set of n by n (-1,0,+1)-matrices). Although, perhaps the word "dimension" could better be described as "degrees of freedom".

Mathematically, degrees of freedom is the dimension of the domain of a random vector, or essentially the number of 'free' components: how many components need to be known before the vector is fully determined.

I suspect that it will be difficult to discuss dimensionality in many combinatorial settings. For example, imagine constructing a Latin square, starting from an empty matrix, placing symbols one-at-a-time in a non-clashing manner. After placing (say) half of the symbols, we might find: (a) there are still many completions of this partial Latin square, (b) there are no completions of this partial Latin square or (c) there is a unique completion of this partial Latin square. This seems to go against the notion of dimensionality -- the number of "components" required to determine the Latin square is not fixed.

You could think of the set of partitions of a set of n elements as having dimension n. You require n pieces of information to determine the partition. There's no point in having a notion of "dimension" unless you can use it for something.

Mathematically, degrees of freedom is the dimension of the domain of a random vector, or essentially the number of 'free' components: how many components need to be known before the vector is fully determined.

I suspect that it will be difficult to discuss dimensionality in many combinatorial settings. For example, imagine constructing a Latin square, starting from an empty matrix, placing symbols one-at-a-time in a non-clashing manner. After placing (say) half of the symbols, we might find: (a) there are still many completions of this partial Latin square, (b) there are no completions of this partial Latin square or (c) there is a unique completion of this partial Latin square. This seems to go against the notion of dimensionality -- the number of "components" required to determine the Latin square is not fixed.

You could think of the set of partitions of a set of n elements as having dimension n. You require n pieces of information to determine the partition. There's no point in having a notion of "dimension" unless you can use it for something.

Describe all solutions of Ax=0 in parametric vector form, where A is row equivalent to the given matrix

$$\left[\begin{array}{cccc}1& 3& 0& -4\\ 2& 6& 0& -8\end{array}\right]$$ Find, correct to the nearest degree, the three angles of the triangle with the given vertices

A(1, 0, -1), B(3, -2, 0), C(1, 3, 3)Whether f is a function from Z to R if

?

a) $f\left(n\right)=\pm n$.

b) $f\left(n\right)=\sqrt{{n}^{2}+1}$.

c) $f\left(n\right)=\frac{1}{{n}^{2}-4}$.How to write the expression ${6}^{\frac{3}{2}}$ in radical form?

How to evaluate $\mathrm{sin}\left(\frac{-5\pi}{4}\right)$?

What is the derivative of ${\mathrm{cot}}^{2}x$ ?

How to verify the identity: $\frac{\mathrm{cos}\left(x\right)-\mathrm{cos}\left(y\right)}{\mathrm{sin}\left(x\right)+\mathrm{sin}\left(y\right)}+\frac{\mathrm{sin}\left(x\right)-\mathrm{sin}\left(y\right)}{\mathrm{cos}\left(x\right)+\mathrm{cos}\left(y\right)}=0$?

Find $\mathrm{tan}\left(22.{5}^{\circ}\right)$ using the half-angle formula.

How to find the exact values of $\mathrm{cos}22.5\xb0$ using the half-angle formula?

How to express the complex number in trigonometric form: 5-5i?

The solution set of $\mathrm{tan}\theta =3\mathrm{cot}\theta $ is

How to find the angle between the vector and $x-$axis?

Find the probability of getting 5 Mondays in the month of february in a leap year.

How to find the inflection points for the given function $f\left(x\right)={x}^{3}-3{x}^{2}+6x$?

How do I find the value of sec(3pi/4)?