If a b and y are the roots of 3 x 3 </msup> + 8 x 2 </msup> &#x22

rzfansubs87

rzfansubs87

Answered question

2022-07-01

If a b and y are the roots of 3 x 3 + 8 x 2 1 = 0 find ( b + 1 / y ) ( y + 1 / a ) ( a + 1 / b )

Answer & Explanation

Sophia Mcdowell

Sophia Mcdowell

Beginner2022-07-02Added 14 answers

You have a few mistakes:
( b + 1 y ) ( y + 1 a ) ( a + 1 b ) a 2 b 2 y 2 + 1 a b y , as you write above
( b + 1 y ) ( y + 1 a ) ( a + 1 b ) a 2 b 2 y 2 + 1 a b y , as you apply the formula you wrote
The actual solution is:
( b + 1 y ) ( y + 1 a ) ( a + 1 b ) = 1 a b y ( y b + 1 ) ( a y + 1 ) ( a b + 1 ) = 1 a b y ( a b y 2 + a y + y b + 1 ) ( a b + 1 ) = 1 a b y ( a 2 b 2 y 2 + a 2 b y + a b 2 y + a b y 2 + a b + a y + y b + 1 ) = a b y + a + b + y + a b + a y + y b a b y + 1 a b y
Now, using Vieta's Formulas, we have that a b y = 1 3 , a b + a y + y b = 0 , a + b + y = 8 3 . This gives ( b + 1 y ) ( y + 1 a ) ( a + 1 b ) = 1 3 8 3 + 0 + 3 = 2 3
Desirae Washington

Desirae Washington

Beginner2022-07-03Added 5 answers

You can also calculate the expression directly using the fact that
p ( x ) = 3 ( x a ) ( x b ) ( x y ) 3 a b y = 1
To do so, note that P = ( b + 1 / y ) ( y + 1 / a ) ( a + 1 / b ) = ( b y + 1 ) ( a y + 1 ) ( a b + 1 ) a b y = a b y = 1 3 3 ( 1 3 a + 1 ) ( 1 3 b + 1 ) ( 1 3 y + 1 ) = a b y = 1 3 1 3 ( 1 + 3 a ) ( 1 + 3 b ) ( 1 + 3 y )
Now, a standard trick uses the observation
p ( t 1 3 ) = 3 ( t 1 3 a ) ( t 1 3 b ) ( t 1 3 y ) = 1 9 ( t ( 1 + 3 a ) ) ( t ( 1 + 3 b ) ) ( t ( 1 + 3 y ) )
So, you only need the constant member
c = 1 9 ( 1 + 3 a ) ( 1 + 3 b ) ( 1 + 3 y ) = 1 3 P
of
p ( t 1 3 ) = 3 ( t 1 3 ) 3 + 8 ( t 1 3 ) 2 1
Hence, P = 3 c = 2 3

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?