If a , b , c &#x2208;<!-- ∈ --> ( 0 , &#x03C0;<!-

Jameson Lucero

Jameson Lucero

Answered question

2022-07-01

If a , b , c ( 0 , π 2 ) ,, Then prove that sin ( a + b + c ) sin a + sin b + sin c < 1

Answer & Explanation

Jayvion Tyler

Jayvion Tyler

Beginner2022-07-02Added 23 answers

sin ( a ) + sin ( b ) > sin ( a + b ) if ( a , b ) ( 0 , π )
sin ( a + b + c ) <= sin ( a ) + sin ( b + c ) < sin ( a ) + sin ( b ) + sin ( c )
pipantasi4

pipantasi4

Beginner2022-07-03Added 6 answers

Using
sin ( a + b + c ) sin a sin b sin c
= 2 cos ( 2 a + b + c 2 ) sin ( b + c 2 ) 2 sin ( b + c 2 ) cos ( b c 2 )
So
= 2 sin ( b + c 2 ) [ cos ( 2 a + b + c 2 ) cos ( b c 2 ) ]
= 4 sin ( a + b 2 ) sin ( b + c 2 ) sin ( a + c 2 ) < 0 ,
Bcz given a , b , c ( 0 , π 2 ) . So we get a + b 2 , b + c 2 , c + a 2 ( 0 , π 2 )
So we get
sin ( a + b + c ) < sin a + sin b + sin c sin ( a + b + c ) sin a + sin b + sin c < 1

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?