Given tan &#x2061;<!-- ⁡ --> &#x03B2;<!-- β --> = n sin &#x2061;<

Jaydan Aguirre

Jaydan Aguirre

Answered question

2022-07-12

Given tan β = n sin α cos α 1 n sin 2 α , show that tan ( α β ) = ( 1 n ) tan α

Answer & Explanation

kawiarkahh

kawiarkahh

Beginner2022-07-13Added 15 answers

As we need to eliminate β ,, write tan β = tan { α ( α β ) } and expand.
For the RHS,
n sin α cos α 1 n sin 2 α = n sin α cos α cos 2 α 1 n sin 2 α cos 2 α = n tan 2 α 1 + ( 1 n ) tan 2 α
Kaeden Hoffman

Kaeden Hoffman

Beginner2022-07-14Added 3 answers

With
tan β = n sin α cos α 1 n sin 2 α
we write
n = tan β sin α cos α + tan β sin 2 α
so
1 n = sin α cos α + tan β sin 2 α tan β sin α cos α + tan β sin 2 α = sin α cos α cos 2 α tan β sin α cos α + tan β sin 2 α = tan α tan β tan α + tan β tan 2 α = 1 tan α tan ( α β )

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?