Prove: 1 + (

delirija7z

delirija7z

Answered question

2022-07-09

Prove:
1 + ( tan x sin y ) 2 1 + ( tan x sin z ) 2 = 1 + ( sin x tan y ) 2 1 + ( sin x tan z ) 2

Answer & Explanation

Zichetti4b

Zichetti4b

Beginner2022-07-10Added 13 answers

Notice, the given equality can be easily proved by simplifying LHS
L H S = 1 + ( tan x sin y ) 2 1 + ( tan x sin z ) 2
= 1 + ( sin x sin y cos x ) 2 1 + ( sin x sin z cos x ) 2
= sin 2 z ( sin 2 y cos 2 x + sin 2 x ) sin 2 y ( sin 2 z cos 2 x + sin 2 x )
= sin 2 z ( ( 1 cos 2 y ) ( 1 sin 2 x ) + sin 2 x ) sin 2 y ( ( 1 cos 2 z ) ( 1 sin 2 x ) + sin 2 x )
= sin 2 z ( 1 cos 2 y sin 2 x + sin 2 x cos 2 y + sin 2 x ) sin 2 y ( 1 cos 2 z sin 2 x + sin 2 x cos 2 z + sin 2 x )
= sin 2 z ( ( 1 cos 2 y ) + sin 2 x cos 2 y ) sin 2 y ( ( 1 cos 2 z ) + sin 2 x cos 2 z )
= sin 2 z ( sin 2 y + sin 2 x cos 2 y ) sin 2 y ( sin 2 z + sin 2 x cos 2 z )
= sin 2 z sin 2 y ( 1 + sin 2 x cos 2 y sin 2 y ) sin 2 y sin 2 z ( 1 + sin 2 x cos 2 z sin 2 z )
= 1 + sin 2 x tan 2 y 1 + sin 2 x tan 2 z
= 1 + ( sin x tan y ) 2 1 + ( sin x tan z ) 2 = R H S
Montenovofe

Montenovofe

Beginner2022-07-11Added 3 answers

1 + ( tan x sin y ) 2 1 + ( tan x sin z ) 2 = 1 + ( sin x tan y ) 2 1 + ( sin x tan z ) 2
1 + ( tan x sin y ) 2 1 + ( sin x tan y ) 2 = 1 + ( tan x sin z ) 2 1 + ( sin x tan z ) 2
So, if we can prove that 1 + ( tan x sin A ) 2 1 + ( sin x tan A ) 2 is independent of A, we are done.
Method #1:
1 + ( tan x sin A ) 2 1 + ( sin x tan A ) 2 = 1 + tan 2 x csc 2 A 1 + sin 2 x cot 2 A = cos 2 A + sin 2 x ( 1 + cot 2 A ) cos 2 x ( 1 + sin 2 x cot 2 A ) = sec 2 x which is clearly independent of A
Method #2:
1 + ( tan x sin A ) 2 1 + ( sin x tan A ) 2 = ( sin 2 A cos 2 x + sin 2 x ) sin 2 A sin 2 A cos 2 x ( sin 2 A + cos 2 A sin 2 x ) = sec 2 x as sin 2 A cos 2 x + sin 2 x = sin 2 A ( 1 sin 2 x ) + sin 2 x = sin 2 A + sin 2 x ( 1 sin 2 A ) = ?

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?