Given x , y &#x2208;<!-- ∈ --> ( 0 , &#x03C0;<!-- π --> 2 </mfrac> ] ,

Montenovofe

Montenovofe

Answered question

2022-07-15

Given x , y ( 0 , π 2 ], α > 0 is a constant satisfying 0 < x + y + α < π,
Also it is known that
1 sin x + 1 sin ( x + α ) = 1 sin y + 1 sin ( y + α )
How can we prove x=y "elegantly"?

Answer & Explanation

Sanaa Hinton

Sanaa Hinton

Beginner2022-07-16Added 15 answers

Put x = x + α 2 α 2 to get
sin ( x ) = sin ( x + α 2 ) cos ( α 2 ) sin ( α 2 ) cos ( x + α 2 )
and put x + α = x + α 2 + α 2 to get
sin ( x + α ) = sin ( x + α 2 ) cos ( α 2 ) + sin ( α 2 ) cos ( x + α 2 )
Now with u = sin ( x + α 2 ) we have:
1 sin ( x ) + 1 sin ( x + α ) = 2 cos ( α 2 ) u u 2 ( sin ( α 2 ) ) 2
Do the same with the other expression with v = sin ( y + α 2 ). You get easily u=v or u v = ( sin ( α 2 ) ) 2 , and it is easy, using x + y + α < π, to finish
Shea Stuart

Shea Stuart

Beginner2022-07-17Added 4 answers

1 sin x + 1 sin ( x + α ) = 1 sin y + 1 sin ( y + α )
or,
1 sin x 1 sin y = 1 sin ( y + α ) 1 sin ( x + α )
or,
sin y sin x sin x sin y = sin ( x + α ) sin ( y + α ) sin ( y + α ) sin ( x + α )
or,
2 cos ( x + y 2 ) sin ( x y 2 ) sin x sin y = 2 cos ( x + y 2 + α ) sin ( x y 2 ) sin ( y + α ) sin ( x + α )
or,
2 sin ( x y 2 ) ( cos ( x + y 2 ) sin x sin y + cos ( x + y 2 + α ) sin ( y + α ) sin ( x + α ) ) = 0
It is very easy to say x=y from here. I hope you can do this last step.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?