If p,q,r,x,y,z are non zero real number such that px+qy+rz+sqrt((p^2+q^2+r^2)(x^2+y^2+z^2))=0 Then (py)/(qx)+(qz)/(ry)+(rx)/(pz) is what try (px+qy+rz)^2=(p^2+q^2+r^2)(x^2+y^2+z^2) p^2x^2+q^2y^2+r^2z^2+2pqxy+2qryz+2prxz=p^2x^2+p^2y^2+p^2z^2+q^2x^2+q^2y^2+q^2z^2+r^2x^2+r^2y^2+r^2z^2 2pqxy+2qryz+2prxz=p^2y^2+p^2z^2+q^2x^2+q^2z^2+r^2x^2+r^2y^2 How do i solve it Help me please

Krish Crosby

Krish Crosby

Answered question

2022-09-14

If p,q,r,x,y,z are non zero real number such that
p x + q y + r z + ( p 2 + q 2 + r 2 ) ( x 2 + y 2 + z 2 ) = 0
Then p y q x + q z r y + r x p z is
what try
( p x + q y + r z ) 2 = ( p 2 + q 2 + r 2 ) ( x 2 + y 2 + z 2 )
p 2 x 2 + q 2 y 2 + r 2 z 2 + 2 p q x y + 2 q r y z + 2 p r x z = p 2 x 2 + p 2 y 2 + p 2 z 2 + q 2 x 2 + q 2 y 2 + q 2 z 2 + r 2 x 2 + r 2 y 2 + r 2 z 2
2 p q x y + 2 q r y z + 2 p r x z = p 2 y 2 + p 2 z 2 + q 2 x 2 + q 2 z 2 + r 2 x 2 + r 2 y 2
How do i solve it?

Answer & Explanation

Zackary Galloway

Zackary Galloway

Beginner2022-09-15Added 17 answers

Write v = ( p , q , r ) and w = ( x , y , z ). Then the given relation states
v w + | v | | w | = 0
But v w = | v | | w | cos θ where θ is the angle between them, so
| v | | w | ( cos θ + 1 ) = 0
Since none of the scalars are zero, we get cos θ = 1, so v=kw for some nonzero k R and
p y q x + q z r y + r x p z = k x y k y x + k y z k z y + k z x k x z = 3
Kallie Fritz

Kallie Fritz

Beginner2022-09-16Added 1 answers

By C-S
0 = p x + q y + r z + ( p 2 + q 2 + r 2 ) ( x 2 + y 2 + z 2 ) p x + q y + r z + | p x + q y + r z |
and since
p x + q y + r z + | p x + q y + r z | 0 ,
we obtain
p x + q y + r z + | p x + q y + r z | = 0 ,
which gives
p x + q y + r z 0.
Also, the equality occurs for
( x , y , z ) | | ( p , q , r ) ,
which says that there is k<0, for which
( p , q , r ) = k ( x , y , z ) .
Thus,
c y c p y q x = c y c k x y k y x = 3.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?