Expert Answers to Algebra 2 Problems

Recent questions in Algebra II
Algebra IIAnswered question
Alexis Meyer Alexis Meyer 2022-05-13

This seems very obvious and I am having a bit of trouble producing a formal proof.
sketch proof that the composition of two polynomials is a polynomial
Let
p ( z 1 ) = a n z 1 n + a n 1 z 1 n 1 + . . . + a 1 z 1 + a 0 q ( z 2 ) = b n z 2 n + b n 1 z 2 n 1 + . . . + b 1 z 2 + b 0
be two complex polynomials of degree n where a n , . . , a 0 C and b n , . . , b o C .
Now,
( p q ) ( z 2 ) = p ( q ( z 2 ) )           (by definition) = a n ( q ( z 2 ) ) n + a n 1 ( q ( z 2 ) ) n 1 + . . . + a 1 ( q ( z 2 ) ) + a 0
which is clearly a complex polynomial of degree n 2 .
sketch proof that the composition of two rational functions is a rational function
A rational function is a quotient of polynomials.
Let
a ( z 1 ) = p ( z 1 ) q ( z 1 ) ,   b ( z 2 ) = p ( z 2 ) q ( z 2 )
Now,
( a b ) ( z 2 ) = a ( b ( z 2 ) )           (by definition) = p ( p ( z 2 ) q ( z 2 ) ) q ( p ( z 2 ) q ( z 2 ) ) = a n ( p ( z 2 ) q ( z 2 ) ) n + a n 1 ( p ( z 2 ) q ( z 2 ) ) n 1 + . . . + a 1 ( p ( z 2 ) q ( z 2 ) ) + a 0 b n ( p ( z 2 ) q ( z 2 ) ) n + b n 1 ( p ( z 2 ) q ( z 2 ) ) n 1 + . . . + b 1 ( p ( z 2 ) q ( z 2 ) ) + b 0
Notice that ( p ( z 2 ) q ( z 2 ) ) i         ( i = n , n 1 , . . , 0 ) is a polynomial as
( f g ) ( z 2 ) = f ( g ( z 2 ) ) = ( p ( z 2 ) q ( z 2 ) ) i
where
f ( x ) = x i ,     g ( z 2 ) = ( p ( z 2 ) q ( z 2 ) )
are both polynomials. Hence ( a b ) ( z 2 ) is a rational function as it is the quotient of polynomials.

Algebra IIAnswered question
abdulhaleemseidu2021 abdulhaleemseidu2021 2022-05-11

The majority of Algebra 2 homework will be almost the same for college students these days since the only changes will relate to a practical application like business solutions, financial challenges, and certain problems where formulas and concepts are applicable. Looking for Algebra 2 answers, you will find some solutions below that are most likely to answer your Algebra 2 problems and answers. If you’re a high-school learner, there are Algebra 2 questions for you as well with provided solutions. The most important is to share your instructions and read through examples that address various Algebra 2 questions and answers.