Daisy Hatfield

2023-03-27

What is the derivative of $\mathrm{arcsin}\left[{x}^{\frac{1}{2}}\right]$?

anajusthings5mrf

Beginner2023-03-28Added 10 answers

To find the derivative we will need to use the Chain Rule

$\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}$

We want to find

$\frac{d}{dx}\left(\mathrm{arcsin}\left({x}^{\frac{1}{2}}\right)\right)$

Following the chain rule we let $u={x}^{\frac{1}{2}}$

Deriving u we get

$\frac{du}{dx}=\frac{1}{2}\cdot {x}^{-\frac{1}{2}}=\frac{1}{2\sqrt{x}}$

Then, we substitute u in place of x in the original equation and derive to find $\frac{dy}{du}$

$y=\mathrm{arcsin}\left(u\right)$

$\frac{dy}{du}=\frac{1}{\sqrt{1-{u}^{2}}}$

Next, we substitute these derived values into the chain rule to

find $\frac{dy}{dx}$

$\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-{u}^{2}}}\cdot \frac{1}{2\sqrt{x}}$

Substitute x back into the equation to get the derivative in terms of x only and simplify

$u={x}^{\frac{1}{2}}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-{\left({x}^{\frac{1}{2}}\right)}^{2}}}\cdot \frac{1}{2\sqrt{x}}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-x}}\cdot \frac{1}{2\sqrt{x}}$

$\frac{dy}{dx}=\frac{1}{2\sqrt{x}\cdot \sqrt{1-x}}$

$\frac{dy}{dx}=\frac{1}{2\sqrt{x-{x}^{2}}}$

$\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}$

We want to find

$\frac{d}{dx}\left(\mathrm{arcsin}\left({x}^{\frac{1}{2}}\right)\right)$

Following the chain rule we let $u={x}^{\frac{1}{2}}$

Deriving u we get

$\frac{du}{dx}=\frac{1}{2}\cdot {x}^{-\frac{1}{2}}=\frac{1}{2\sqrt{x}}$

Then, we substitute u in place of x in the original equation and derive to find $\frac{dy}{du}$

$y=\mathrm{arcsin}\left(u\right)$

$\frac{dy}{du}=\frac{1}{\sqrt{1-{u}^{2}}}$

Next, we substitute these derived values into the chain rule to

find $\frac{dy}{dx}$

$\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-{u}^{2}}}\cdot \frac{1}{2\sqrt{x}}$

Substitute x back into the equation to get the derivative in terms of x only and simplify

$u={x}^{\frac{1}{2}}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-{\left({x}^{\frac{1}{2}}\right)}^{2}}}\cdot \frac{1}{2\sqrt{x}}$

$\frac{dy}{dx}=\frac{1}{\sqrt{1-x}}\cdot \frac{1}{2\sqrt{x}}$

$\frac{dy}{dx}=\frac{1}{2\sqrt{x}\cdot \sqrt{1-x}}$

$\frac{dy}{dx}=\frac{1}{2\sqrt{x-{x}^{2}}}$

Find an equation of the plane. The plane through the points (2, 1, 2), (3, −8, 6), and (−2, −3, 1), help please

A consumer in a grocery store pushes a cart with a force of 35 N directed at an angle of $25}^{\circ$ below the horizontal. The force is just enough to overcome various frictional forces, so the cart moves at a steady pace. Find the work done by the shopper as she moves down a $50.0-m$ length aisle.

??What is the derivative of $y=\mathrm{arcsin}\left(\frac{3x}{4}\right)$?

Determine if the graph is symmetric about the $x$-axis, the $y$-axis, or the origin.$r=4\mathrm{cos}3\theta $.

How to differentiate $1+{\mathrm{cos}}^{2}\left(x\right)$?

What is the domain and range of $\left|\mathrm{cos}x\right|$?

How to find the value of $\mathrm{csc}74$?

How to evaluate $\mathrm{sec}\left(\pi \right)$?

Using suitable identity solve (0.99)raised to the power 2.

How to find the derivative of $y=\mathrm{tan}\left(3x\right)$?

Find the point (x,y) on the unit circle that corresponds to the real number t=pi/4

How to differentiate ${\mathrm{sin}}^{3}x$?

A,B,C are three angles of triangle. If A -B=15, B-C=30. Find A , B, C.

Find the value of $\mathrm{sin}{270}^{\circ}$.

What is the derivative of $y={\mathrm{sec}}^{3}\left(x\right)$?