Plot the complex number z=10-3i and find its absolute value.

Bergen

Bergen

Answered question

2021-07-28

Plot the complex number and find its absolute value.
z=10-3i

Answer & Explanation

Nicole Conner

Nicole Conner

Skilled2021-07-29Added 97 answers

Concept used:
The absolute value or modulus of complex number is the distance
between the origin (0,0) and point (a,b) in the complex plane.
Formula to find the absolute value of any complex number:
|z|=x2+y2 or |z|=a2+b2.
To plot the graph:
Step 1. Determine the real and imaginary party of the complex number.
Step2. Move along the horizontal axis to show the real part of the number.
Step3. Move parallel to the vertical to show the imaginary part of the number.
Step4. Plot the point.
Calculation:
The complex number is Interprets as z=a+bi can be represent as the point (a,b) in the complex plane.
The complex number z=10-3i can be represented as the point (10, -3) in the complex plane.
The plot complex number z=10-3i as shown in below:

The absolute value of z = a+bi is |a+bi|=a2+b2.
|z|=102+(3)2
100+9=109.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?