 untchick04tm

2021-12-29

${E}^{4x}=12$ algebraically for d rounded to the nearest hundredth
a)1.00
b)1.10
c)0.62
d)0.48 Corgnatiui

The equation shown is ${e}^{4x}=12$ and to determine the value of x, we must find a solution.
To solve this question, natural logs can be used on both sides.
$\mathrm{ln}\left({e}^{4x}\right)=\mathrm{ln}\left(12\right)$
on the left hand side exponential gets cancelled we get
$4x=2.48$ [ the value of $\mathrm{ln}\left(12\right)=2.48$
$x=\frac{4}{2.48}$
$x=0.62$ Vivian Soares

Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
$\mathrm{ln}\left({e}^{4x}\right)=\mathrm{ln}\left(12\right)$
Expand the left side.
$4x=\mathrm{ln}\left(12\right)$
Divide each term by 4 and simplify.
$x=\frac{\mathrm{ln}\left(12\right)}{4}$
The result can be shown in multiple forms.
Exact Form:
$x=\frac{\mathrm{ln}\left(12\right)}{4}$
Decimal Form:
$x=0.62$ Vasquez

Given: e${}^{4x}$=12 and we have to solve it to find the value of x
To solve this question, we can take natural log both sides
ln(e${}^{4x}$)=ln(12) on the left hand side exponential gets cancelled we get
4x=2.48 [the value of ln(12)=2.48]
x=4/2.48