Salvatore Boone

2021-12-29

To solve: $0.6x-10=1.4x-14$

Step 1
Given: $0.6x-10=1.4x-14$
Multiply by 10 on both sides,
$10\left(0.6x-10\right)=10\left(1.4x-14\right)$
By distributive property,
$10\left(0.6x-10\right)=10×0.6x-10×10$
$10\left(0.6x-10\right)=6x-100$
By distributive property,
$10\left(1.4x-14\right)=10×1.4x-10×14$
$10\left(1.4x-14\right)=14x-140$
Replace $10\left(0.6x-10\right)$ with $6x-100$
Replace $10\left(1.4x-14\right)$ with $14x-140$
$6x-100=14x-140$
Add $-6x+140$ on both sides,
$6x-100-6x+140=14x-140-6x+140$
$40+0x=8x+0$
$40=8x$
It is $8x=40$
Divide by 8 on both sides,
$\frac{8x}{8}=\frac{40}{8}$
$x=\frac{40}{8}$
Divide by 8 on both numerator and denominator,
$x=\frac{40}{8}÷\frac{8}{8}$
$x=5$
The value of x is 5.

Karen Robbins

Step 1
Group all x terms on the left side of the equation
$0.6x-10=1.4x-14$
Subtract 1.4x from both sides:
$0.6x-10-1.4x=1.4x-14-1.4x$
Group like terms:
$0.6x-1.4x-10=1.4x-14-1.4x$
Simplify the arithmetic:
$-0.8x-10=1.4x-1.4x-14$
Group like terms:
$-0.8x-10=1.4x-1.4x-14$
Simplify the arithmetic:
$-0.8x-10=-14$
Step 2
Group all constants on the right side of the equation
$-0.8x-10=-14$
$-0.8x-10+10=-14+10$
Simplify the arithmetic:
$-0.8x=-14+10$
$-0.8x=-4$
Step 3
Isolate the x
$-0.8x=-4$
Divide both sides by -0.8:
$\frac{-0.8x}{-0.8}=\frac{-4}{-0.8}$
Cancel out the negatives:
$\frac{0.8x}{0.8}=\frac{-4}{-.0.8}$
Simplify the arithmetic:
$x=\frac{-4}{-0.8}$
Cancel out the negatives:
$x=\frac{4}{0.8}$
Simplify the arithmetic:
$x=5$

karton

Step 1
0.6x-10=1.4x-14
Subtract 1.4x from both sides.
0.6x-10-1.4x=-14
Combine
-0.8x-10=-14
-0.8x=-14+10
Add -14 and 10 to get -4.
-0.8x=-4
Divide both sides by -0.8
$x=\frac{-4}{-0.8}$
Expand by multiplying both numeator and the denominator by 10
$x=\frac{-40}{-8}$
Divide -40 by -8 to get 5
x=5

Do you have a similar question?