Lennie Davis

2021-12-26

To determine:
$13x-15x+8=4x+2-24$

### Answer & Explanation

Becky Harrison

Step 1
To solve $13x-15x+8=4x+2-24$
$+8-2x=4x-22$
Add $2x+22$ on both sides,
$+8-2x+2x+22=4x-22+2x+22$
Add the like terms,
$30+0x=6x+0$
$30=6x$
So, it is $6x=30$
Divide by 6 on both sides,
$\frac{6x}{6}=\frac{30}{6}$
$x=\frac{30}{6}$
Divide by 6 on both numerator and denominator,
$x=\frac{30}{6}÷\frac{6}{6}$
$x=5$
The value of x is 5.

Medicim6

Step 1
Simplify the expression NSNK $12x-15x+8=4x+2-24$
Simplify the arithmetic:
$-2x+8=4x+2-24$
Simplify the arithmetic:
$-2x+8=4x-22$
Step 2
Group all x terms on the left side of the equation
$-2x+8=4x-22$
Subtract 4x from both sides: NSNK $-2x+8-4x=4x-22-4x$
Group like terms:
$-2x-4x+8=4x-22-4x$
Simplify the arithmetic:
$-6x+8=4x-22-4x$
Group like terms:
$-6x+8=4x-4x-22$
Simplify the arithmetic:
$-6x+8=-22$
Step 3
Group all constants on the right side of the equation
$-6x+8=-22$
Subtract 8 from both sides:
$-6x+8-8=-22-8$
Simplify the arithmetic:
$-6x=-22-8$
Simplify the arithmetic:
$-6x=-30$
Step 4
Isolate the x
$-6x=-30$
Divide both sides by -6:
$\frac{-6x}{-6}=\frac{-30}{-6}$
Cancel out the negatives:
$\frac{6x}{6}=\frac{-30}{-6}$
Simplify the fraction:
$x=\frac{-30}{-6}$
Cancel out the negatives:
$x=\frac{30}{6}$
Find the greatest common factor of the numerator and denominator:
$x=\frac{5×6}{1×6}$
Factor out and cancel the greatest common factor:
$x=5$

karton

Step 1
Combine 13x and -15x to get -2x
=28=4x+2-24
Subtract 24 from 2 to get -22
-2x+8=4x-22
Subtract 4x from both sides
-2x+8=4x=-22
Combine -2x and -4x to get -6x
-6x+8=-22
Subtract 8 from both sides
-6x=-22-8
Subtract 8 from -22 to get -30
-6x=-30
Divide both sides by -6
$x=\frac{-30}{-6}$
Divide -30 by -6 to get 5
x=5

Do you have a similar question?

Recalculate according to your conditions!