Give the solution 1) \(\displaystyle{\frac{{{2}-{x}}}{{{9}{x}}}}={\frac{{{x}-{2}}}{{{x}^{{3}}}}}\) 2) \(\displaystyle{\left|{\frac{{{x}^{{2}}-{9}}}{{{x}^{{2}}+{1}}}}\right|}\leq{1}\) 3)

Miley Caldwell

Miley Caldwell

Answered question

2022-03-23

Give the solution
1) 2x9x=x2x3
2) |x29x2+1|1
3) 16x22x+1=3
4) log3(6x)log3(x)=2

Answer & Explanation

Aaliyah Phillips

Aaliyah Phillips

Beginner2022-03-24Added 9 answers

1) 2x9x=x2x3
x3(2x)=9x(x2)
x3(2x)9x(x2)=0
x(2x)(x2+9)=0
x=0 or 2x=0 or x2+9=0
x=0 or x=2 is the solution
2) |x29x2+1|1
1x29x2+11
1x29x2+1 or x29x2+11
(x2+1)x29
x21x29
912x2
82x2
4x2
±2x
There is no solution
3) 16x22x+1=3
24x22x2=3
22x22x22x2=3
22x(22x2)=3
Let 22x=m, then
m(m2)=3
m22m3=0
m23m+m3=0
m(m3)+1(m3)=0
(m+1)(m3)=0
m+1=0 or m3=0
m=1 or m=3
Substitute m=22x
22x=1 or 22x=3
22x=1, which isn't possible
22x=3
Take ln on both sides
ln(22x)=ln(3)
2xln(2)=ln(3)
x=ln(3)2ln(2)

Wilson Rivas

Wilson Rivas

Beginner2022-03-25Added 12 answers

I did the forth
log3(6x)log3(x)=2
log3(6x)=2log3(x)
ln(6x)ln(3)=2ln(x)ln(3)
ln(6x)=2ln(x)
ln(6x)=ln(x)26x=x2
x2+x6=0
x2+3x2x6=0
x(x+3)2(x+3)=0
(x2)(x+3)=0
x=2 or x=3
but x=3 doesn't satisfy the equation, thus x=2 is the solution.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?