\(\displaystyle{W}_{{n}}={\frac{{{3}{n}^{{\sqrt{{{5}}}}}-{2}{n}^{{3}}+{n}}}{{{6}{n}^{{\sqrt{{{7}}}}}+{4}{n}^{{3}}-{8}}}}\), \(\displaystyle{Y}_{{n}}={\frac{{{6}{n}^{{5}}+{2}{n}^{{2}}-{1}}}{{{3}{n}^{{2}}{\left({2}{n}^{{3}}+{1}\right)}}}}\), \(\displaystyle{Z}_{{n}}={1}-{\sin{{\left({\frac{{{2}{n}\pi}}{{{5}}}}\right)}}}\)

Janiyah Hays

Janiyah Hays

Answered question

2022-03-30

Wn=3n52n3+n6n7+4n38, Yn=6n5+2n213n2(2n3+1), Zn=1sin(2nπ5)

Answer & Explanation

Adan Berry

Adan Berry

Beginner2022-03-31Added 12 answers

Given
Wn=3n52n3+n6n7+4n38
Yn=6n5+2n213n2(2n3+1)
Zn=1sin(2nπ5)
Now, 
1) limnWn=limn3n52n3+n6n7+4n38
limnWn=limn2n3+n+3n54n38+6n7
limnWn=limnn3(-2+1n2+3n5n3)n3(4-8n3+6n7)n3)
limnWn=limn2+1n2+3n5n348n3+6n7n3
limnWn=2+0+040+0
limnWn=12
2) limnYn=limn6n5+2n213n2(2n3+1)
limnYn=limnn5(6+2n31n5)3n2n3(2+1n3)
limnYn=limnn5(6+2n31n5)3n5(2+1n3)
limnYn=limn(6+2n31n5)3(2+1n3)
limnYn=6+003(2+0)
limnYn=1
3) limnZn=limn[1sin(2nπ5)]
As we don't know the value of the second term sin(2nπ5) when n Zn diverges.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?