<mover> x &#x02D9;<!-- ˙ --> </mover> = x &#x2212;<!-- − --> y &#x2212;<!-- −

kunyatia33

kunyatia33

Answered question

2022-05-20

x ˙ = x y x ( x 2 + y 2 )
y ˙ = y + x y ( x 2 + y 2 )
1. Determine the equilibrium points
2. Show that this system has a periodic solution. Use the following substitution x = r cos ( ϕ ) , y = r sin ( ϕ ).
3. Give the explicit solution for this system. Also determine the period of this solution.

Answer & Explanation

Liberty Gates

Liberty Gates

Beginner2022-05-21Added 11 answers

x 2 + y 2 = r 2
Differentiating this gives you:
2 x x + 2 y y = 2 r r
Now you substitute x and y :
x ( x y x ( x 2 + y 2 ) ) + y ( y + x y ( x 2 + y 2 ) ) = r r
This gives us:
x 2 x y x 2 ( x 2 + y 2 ) + y 2 + x y y 2 ( x 2 + y 2 ) = r r
x 2 x y x 2 r 2 + y 2 + x y y 2 r 2 = r r
x 2 r 2 ( x 2 + y 2 ) + y 2 = r r
r 2 r 4 = r r
r 2 r 4 = r r
r r 3 = r
To determine angle use:
r sin θ r cos θ = tan θ = y x
Using the quotient rule gives us:
θ = x y y x r 2 = x y y 2 x y ( x 2 + y 2 ) x y x 2 + x y ( x 2 + y 2 ) r 2
θ = 1
r = r r 3 = r ( 1 r ) ( 1 + r )
check:
Polar coordinates differential equation
r sin θ r cos θ = tan θ = y x
tan θ = y x θ = a r c t a n y x
Using the quotient rule gives us:
θ = a r c t a n ( y x ) = ( y x ) 1 + ( y x ) 2 = x y y x r 2

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?