System of nonlinear differential equations <mover> y &#x02D9;<!-- ˙ -->

skottyrottenmf

skottyrottenmf

Answered question

2022-05-21

System of nonlinear differential equations
y ˙ 1 = 2 y 1 y 2 y 2 2
y ˙ 2 = 2 y 1 2 y 1 y 2
i) Calculate the equilibrium points en determine their stability.
ii) Draw the Phase Plot.

Answer & Explanation

Haleigh Vega

Haleigh Vega

Beginner2022-05-22Added 13 answers

Critical Points:
2 y 1 y 2 y 2 2 = 0 , 2 y 1 2 y 1 y 2 = 0 ( y 1 , y 2 ) = ( 1 , 1 ) , ( 1 , 1 )
Jacobian:
J ( y 1 , y 2 ) = [ y 2 2 y 1 y 2 y 1 2 y 2 y 1 ]
Jacobian's eigenvalues at each critical point:
J ( 1 , 1 ) = [ 1 3 3 1 ]
The eigenvalues are λ 1 = 2 , λ 2 = 4, which is a saddle point.
J ( 1 , 1 ) = [ 1 3 3 1 ]
The eigenvalues are λ 1 = 4 , λ 2 = 2, which is a saddle point.
prensistath

prensistath

Beginner2022-05-23Added 4 answers

{ y ˙ 1 = 2 y 1 y 2 y 2 2 y ˙ 2 = 2 y 1 2 y 1 y 2
y ˙ 1 + y ˙ 2 = 4 ( y 1 + y 2 ) 2 y 1 + y 2 = 2 e 4 t A e 4 t + A , A   is a constant
y ˙ 1 y ˙ 2 = ( y 1 y 2 ) ( y 1 + y 2 ) = ( y 1 y 2 ) ( 2 e 4 t A e 4 t + A )
ln ( y 1 y 2 ) = 2 [ t + 1 2 ln ( A + e 4 t ) ] + a constant
y 1 y 2 = B e 2 t ( A + e 4 t ) , B   is a constant

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?