How to solve these two second-order coupled PDE? 0 = A f ( x , y ) +

aligass2004yi

aligass2004yi

Answered question

2022-06-30

How to solve these two second-order coupled PDE?
0 = A f ( x , y ) + B 2 f ( x , y ) x 2 + C 2 f ( x , y ) y 2 + D 2 g ( x , y ) x y 0 = A g ( x , y ) + B 2 g ( x , y ) y 2 + C 2 g ( x , y ) x 2 + D 2 f ( x , y ) x y

Answer & Explanation

mar1nerne

mar1nerne

Beginner2022-07-01Added 20 answers

(1) 0 = A f ( x , y ) + B 2 f ( x , y ) x 2 + C 2 f ( x , y ) y 2 + D 2 g ( x , y ) x y ,
(2) 0 = A g ( x , y ) + B 2 g ( x , y ) x 2 + C 2 g ( x , y ) y 2 + D 2 f ( x , y ) x y ;
Having said the above, (1) and (2) can be uncoupled as follows set:
(3) U ( x , y ) = f ( x , y ) + g ( x , y ) ,
(4) V ( x , y ) = f ( x , y ) g ( x , y ) ;
if we now add (1) and (2) we obtain
0 = A ( f ( x , y ) + g ( x , y ) ) + B 2 ( f ( x , y ) + g ( x , y ) ) x 2 + C 2 ( f ( x , y ) + g ( x , y ) ) y 2 + D 2 ( f ( x , y ) + g ( x , y ) ) x y
(5) = A U ( x , y ) + B 2 U ( x , y ) x 2 + C 2 U ( x , y ) y 2 + D 2 U ( x , y ) x y ,
that is,
(6) A U ( x , y ) + B 2 U ( x , y ) x 2 + C 2 U ( x , y ) y 2 + D 2 U ( x , y ) x y = 0 ,
and similarly, subtracting yields
(7) A V ( x , y ) + B 2 V ( x , y ) x 2 + C 2 V ( x , y ) y 2 D 2 V ( x , y ) x y = 0 ,
where the sign of D is negative to accomodate the fact that subtraction is "asymmetric": g f = ( f g ). (6) and (7) are decoupled, and may be solved seperately, and then f ( x , y ) and g ( x , y ) may be recovered from
(8) f ( x , y ) = 1 2 ( U ( x , y ) + V ( x , y ) ) ,
(9) g ( x , y ) = 1 2 ( U ( x , y ) V ( x , y ) ) .
Of course the above does not address the issues of boundary conditions, well-posedness, etc., but I think the boundary conditions for U ( x , y ), V ( x , y ) may follow a pattern similar to (3), (4). Worth looking at, though.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?